Day 7 - Introduction to Gene Differential Expression Analysis using DESeq2

Authors:

Jacob Stanley (jacob.stanley@colorado.edu)

Edited and updated by: Daniel Ramirez (<u>daniel.ramirezhernandez@colorado.edu</u>) - 2022 Rutendo Sigauke (<u>rutendo.sigauke@colorado.edu</u>) - 2023

Additional DESeq2 resources:

https://bioconductor.org/packages/release/bioc/html/DESeq2.html https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html

Introduction:

Here will use those gene counts tables as input for the software DESeq2 to answer the question: What genes are statistically significantly changed upon an experimental condition? In particular, we will explore a dataset from a real experiment published (Andrysik 2017 et al. doi: 10.1101/gr.220533.117). You will use a gene count table that we already prepared for you, from an experiment where Human colon cancer cells (HCT116) were treated with either the vehicle DMSO, or with the p53-activator drug Nutlin.

The purpose of DESeq2 is to identify which genomic loci demonstrate a statistically significant difference in expression level between two or more conditions (referred to as "gene differential expression analysis"). It does so by modeling the variance in expression level across the full range of baseline expression levels present in the data and determines if the differential expression level for each locus is significantly greater than this variance. DESeq2 takes as an input the unnormalized count values for each (non-overlapping) loci in each sample. We recommend that you use featureCounts() to compute count values. DESeq2 performs best when provided multiple replicates per experimental condition (preferably 5+ replicates), in order to get an accurate estimation of within condition variance. DESeq2 is only to be used for non-overlapping, unique genomic loci. If one's aim is to compute differential expression of transcripts, DESeq2 is not appropriate.

Note: All commands are executed within the R environment. We will be executing them manually, from the R command line, but they can also be compiled into a single script to be executed together.

--- FILES ARE IN THE DATA FOLDER ON GITHUB FOR DAY7---

Below are the featureCounts output files as well as the condition table we will be using. Get these files onto your own local machine. We will use your local machine installation of RStudio and use these files as inputs.

/path/to/day07/data

Andrysik2017_counts.tsv Andrysik2017_samples.tsv

Shown below is the top of the file **Andrysik2017_counts.tsv**, showing the raw unnormalized read counts across the first genes of the annotation file.

SRR4098430	SRR4098431	SRR4098432	SRR4098433	
DDX11L1	4	1	3	0
WASH7P	55	24	31	61
MIR6859-3	8	1	13	10
MIR6859-2	8	1	13	10
MIR6859-1	8	1	13	10
MIR6859-4	8	1	13	10
MIR1302-2	0	0	0	0
MIR1302-11	0	0	0	0
MIR1302-9	0	0	0	0

Shown below is the contents of the **Andrysik2017_samples.tsv** file. It has four columns, each with information regarding each of the RNA-seq datasets. This information was used by featureCounts, and will be used again by DESeq2 to know which datasets are replicates of each other, and against what other replicates to make any comparison.

bamfilename	SRR	p53	celltype	condition
SRR4098430.trimmed.sorted.bam	SRR4098430	p53_wild	hct	dmso
SRR4098431.trimmed.sorted.bam	SRR4098431	p53_wild	hct	dmso
SRR4098432.trimmed.sorted.bam	SRR4098432	p53_wild	hct	nutlin
SRR4098433.trimmed.sorted.bam	SRR4098433	p53_wild	hct	nutlin

--- USING DESEQ2 WITHIN RSTUDIO ---

We will use DESeq2 with the RStudio on your local computer. First, we need to tell RStudio to load the DESeq2 library (if you have not yet installed DESeq2, let a class helper know. Be aware though that *installing DESeq2 takes some time* as it also needs several dependencies installed as well). Loading DESeq2 will prompt some red messages, and they should end with R normal ">" prompt symbol.

```
> library(DESeq2)
Loading required package: S4Vectors
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':
```

- 1. Load the two input files using read.table():
 - a. The conditions table contains the sample information.

```
> conditionsTableFile <- "~/Desktop/sr2023/day7/Andrysik2017_samples.tsv"</pre>
> conditionsTable <- read.table(conditionsTableFile,</pre>
                                  sep = " \setminus t",
+
                                 header = TRUE)
+
> conditionsTable
                     bamfilename
                                          SRR
                                                   p53 celltype condition
1 SRR4098430.trimmed.sorted.bam SRR4098430 p53_wild
                                                             hct
                                                                       dmso
2 SRR4098431.trimmed.sorted.bam SRR4098431 p53_wild
                                                             hct
                                                                       dmso
3 SRR4098432.trimmed.sorted.bam SRR4098432 p53_wild
                                                             hct
                                                                     nutlin
4 SRR4098433.trimmed.sorted.bam SRR4098433 p53_wild
                                                             hct
                                                                     nutlin
```

b. Load the counts tables. The column names should match the names (SRR) in the conditions table

```
> geneCountsTableFile <- "~/Desktop/sr2023/day7/Andrysik2017_counts.tsv"
> geneCountsTable <- read.table(geneCountsTableFile,
+ header = TRUE, sep = "\t", fill = TRUE,
+ stringsAsFactors = FALSE, na.strings = "")</pre>
```

<pre>> head(geneCountsTable)</pre>					
	SRR4098430	SRR4098431	SRR4098432	SRR4098433	
DDX11L1	4	1	3	0	
WASH7P	55	24	31	61	
MIR6859-3	8	1	13	10	
MIR6859-2	8	1	13	10	
MIR6859-1	8	1	13	10	
MIR6859-4	8	1	13	10	

2. Next, load the two inputs onto DESeq2 using the following function. You can then type the variable **dds** and see some information of its contents, including its variable type, the number of genes that have counts (e.g. 26,485), and some of the gene and datasets labels.

```
> dds <- DESeqDataSetFromMatrix(countData = geneCountsTable,
+ colData = conditionsTable,
+ design = ~ condition)
> dds
class: DESeqDataSet
dim: 26485 4
metadata(1): version
assays(1): counts
rownames(26485): DDX11L1 WASH7P ... GOLGA2P3Y GOLGA2P2Y
rowData names(0):
colnames(4): SRR4098430 SRR4098431 SRR4098432 SRR4098433
colData names(5): bamfilename SRR p53 celltype condition
```

Optionally, you can remove all the gene entries that have low counts, such as those gene entries that have mostly zero counts. If you do not remove them, DESeq2 will automatically remove them internally while doing its calculations. Notice that printing the **dds** variable again gives us a smaller number of genes with counts (e.g. 18,698).

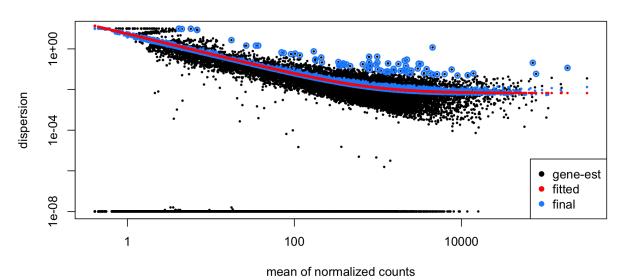
```
dds <- dds[rowSums(counts(dds)) > 1,]
```

```
> dds <- dds[rowSums(counts(dds)) > 1,]
> dds
class: DESeqDataSet
dim: 18698 4
metadata(1): version
assays(1): counts
rownames(18698): DDX11L1 WASH7P ... KDM5D EIF1AY
rowData names(0):
colnames(4): SRR4098430 SRR4098431 SRR4098432 SRR4098433
colData names(5): bamfilename SRR p53 celltype condition
```

- 3. Run DESeq2's main function **DESeq** on the **dds** variable you created. DESeq2 will internally do several actions:
 - a. it will estimate each dataset size scale factors,
 - b. it will estimate dispersion,
 - c. it will fit a generalized linear model, and
 - d. it will calculate each gene's fold change.

DEdds <- DESeq(dds)</pre>

```
> DEdds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing</pre>
```


Check what size factors were estimated for each of the 4 HCT116 datasets. Check how the total number of gene-assigned reads changes to a more homogeneous number with the normalization (e.g. between 20 and 23 million counts).

```
sizeFactors(DEdds)
colSums(counts(DEdds, normalized = FALSE))
colSums(counts(DEdds, normalized = TRUE))
```

<pre>> sizeFactors(DEdds)</pre>					
	SRR4098431	SRR4098432	SRR4098433		
1.2276148	0.9455801	1.0205486	0.8583701		
> colSums(counts(DEdds	s, normalize	ed = FALSE))		
SRR4098430	SRR4098431	SRR4098432	SRR4098433		
28661527	20467240	21644243	17631625		
> colSums(counts(DEdds	s, normalize	ed = TRUE))		
SRR4098430	SRR4098431	SRR4098432	SRR4098433		
23347329	21645168	21208438	20540819		

You can check the dispersion estimates with a simple DESeq2 function. You want to see that the estimates are monotonically descending and that most data points (blue) are nearby the fitted line (red).

```
plotDispEsts(DEdds, main = "Dispersion Estimates")
```


Dispersion Estimates

4. Define the alpha value that DESeq2 will need to assign statistical significance, as well as the names of the two experimental conditions we want to compare against each other.

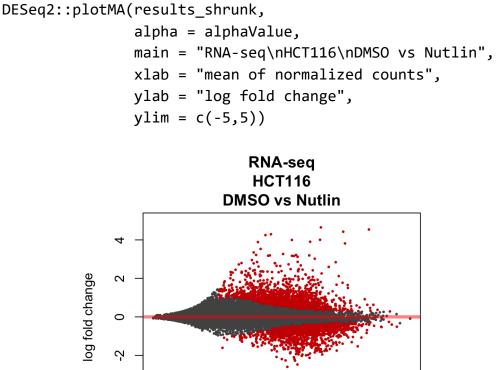
```
alphaValue <- 0.05
contrast <- c("condition", "nutlin", "dmso")</pre>
```

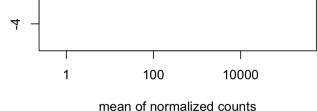
5. Extract statistically significant results, and do DESeq2 special log fold-change shrinkage, which is useful for visualization purposes. DESeq2 will let you know that it is using the normal algorithm for doing the shrinkage, and that there are newer algorithms if you want to test them out as well. They require independent library installation.

```
> results <- results(DEdds, alpha = alphaValue, contrast = contrast)
> results_shrunk <- lfcShrink(DEdds, contrast = contrast, res = results)
using 'normal' for LFC shrinkage, the Normal prior from Love et al (2014).</pre>
```

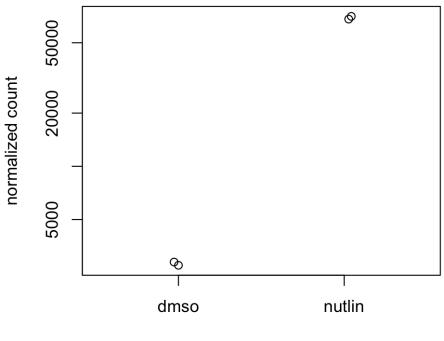
Note that type='apeglm' and type='ashr' have shown to have less bias than type='normal'. See ?lfcShrink for more details on shrinkage type, and the DESeq2 vignette. Reference: https://doi.org/10.1093/bioinformatics/bty895

See that both unshrunk and shrunk results have identical nominal and adjusted pvalues. The shrinkage only affects the fold-change estimation values.


> results						
log2 fold change (MLE): condition nutlin vs dmso Wald test p-value: condition nutlin vs dmso						
DataFrame	with 18698 rows ar					
	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
DDX11L1		-0.541154060047158		-0.207837733159535		NA
WASH7P	42.9060759663724	0.517353622802487		0.863332355927922		
MIR6859-3	7.99062153766618	1.65086203545657	1.28601753455973		0.199246583427946	NA
MIR6859-2	7.99062153766618	1.65086203545657	1.28601753455973	1.28370103135627	0.199246583427946	NA
MIR6859-1	7.99062153766618	1.65086203545657	1.28601753455973	1.28370103135627	0.199246583427946	NA
TTTY15	0.528775936462056	-2.41242479379036	4.88092755149934	-0.494255398863542	0.621125819630669	NA
DDX3Y	3.28907068171306	-0.369751046194624	2.26628022373276	-0.163153277481993	0.870397752363098	NA
UTY	0.610940807886762	-2.64939293796763	4.86649645013828	-0.544414850624692	0.586156028723948	NA
KDM5D	1.02614847444861	3.59250404345603	3.60933075889997	0.995337995720548	0.319571904010689	NA
EIF1AY	0.448613210241605	0.220163642606723	4.98176791207185	0.0441938778547312	0.964749862051614	NA
> results_		lition outlin up due				
<pre>> results_ log2 fold</pre>	change (MAP): cond	lition nutlin vs dms	0			
<pre>> results_ log2 fold Wald test</pre>	change (MAP): cond p-value: condition	n nutlin vs dmso	0			
<pre>> results_ log2 fold Wald test</pre>	change (MAP): cond p-value: condition with 18698 rows an	n nutlin vs dmso nd 6 columns				
<pre>> results_ log2 fold Wald test</pre>	change (MAP): cond p-value: condition with 18698 rows an baseMean	n nutlin vs dmso nd 6 columns log2FoldChange	lfcSE			
> results_ log2 fold Wald test DataFrame	change (MAP): cond p-value: condition with 18698 rows an baseMean <numeric></numeric>	n nutlin vs dmso nd 6 columns log2FoldChange <numeric></numeric>	lfcSE <numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
<pre>> results_ log2 fold Wald test DataFrame</pre>	change (MAP): cond p-value: condition with 18698 rows an baseMean <numeric> 1.8138745349181</numeric>	n nutlin vs dmso nd 6 columns log2FoldChange <numeric> -0.048957609502198</numeric>	lfcSE <numeric> 0.234917374476926</numeric>	<numeric> -0.207837733159535</numeric>	<numeric> 0.835355669073455</numeric>	<numeric> NA</numeric>
<pre>> results_ log2 fold Wald test DataFrame DDX11L1 WASH7P</pre>	change (MAP): cond p-value: condition with 18698 rows an baseMean <numeric> 1.8138745349181 42.9060759663724</numeric>	n nutlin vs dmso nd 6 columns log2FoldChange <numeric> -0.048957609502198 0.336779763086188</numeric>	lfcSE <numeric> 0.234917374476926 0.390079258852283</numeric>	<pre><numeric> -0.207837733159535 0.863332355927922</numeric></pre>	<numeric> 0.835355669073455 0.387954759325097</numeric>	<numeric> NA 0.576468757253455</numeric>
<pre>> results_ log2 fold Wald test DataFrame DDX11L1 WASH7P MIR6859-3</pre>	change (MAP): cond p-value: condition with 18698 rows an snumeric> 1.8138745349181 42.9060759663724 7.99062153766618	n nutlin vs dmso nd 6 columns log2FoldChange <numeric> -0.048957609502198 0.336779763086188 0.471627220272488</numeric>	lfcSE <numeric> 0.234917374476926 0.390079258852283 0.373728201442415</numeric>	<pre><numeric> -0.207837733159535 0.863332355927922 1.28370103135627</numeric></pre>	<pre><numeric> 0.835355669073455 0.387954759325097 0.199246583427946</numeric></pre>	<numeric> NA 0.576468757253455 NA</numeric>
<pre>> results_ log2 fold Wald test DataFrame DDX11L1 WASH7P MIR6859-3 MIR6859-2</pre>	change (MAP): cond p-value: condition with 18698 rows an anumeric> 1.8138745349181 42.9060759663724 7.99062153766618 7.99062153766618	n nutlin vs dmso nd 6 columns log2FoldChange <numeric> -0.048957609502198 0.336779763086188 0.471627220272488 0.471627220272488</numeric>	lfcSE <numeric> 0.234917374476926 0.390079258852283 0.373728201442415 0.373728201442415</numeric>	<numeric> -0.207837733159535 0.863332355927922 1.28370103135627 1.28370103135627</numeric>	<numeric> 0.835355669073455 0.387954759325097 0.199246583427946 0.199246583427946</numeric>	<numeric> NA 0.576468757253455 NA NA</numeric>
<pre>> results_ log2 fold Wald test DataFrame DDX11L1 WASH7P MIR6859-3</pre>	change (MAP): cond p-value: condition with 18698 rows an snumeric> 1.8138745349181 42.9060759663724 7.99062153766618	n nutlin vs dmso nd 6 columns log2FoldChange <numeric> -0.048957609502198 0.336779763086188 0.471627220272488 0.471627220272488</numeric>	lfcSE <numeric> 0.234917374476926 0.390079258852283 0.373728201442415</numeric>	<numeric> -0.207837733159535 0.863332355927922 1.28370103135627 1.28370103135627</numeric>	<pre><numeric> 0.835355669073455 0.387954759325097 0.199246583427946</numeric></pre>	<numeric> NA 0.576468757253455 NA</numeric>
<pre>> results_ log2 fold Wald test DataFrame DDX11L1 WASH7P MIR6859-3 MIR6859-2 MIR6859-1 </pre>	change (MAP): cond p-value: condition with 18698 rows an saseMean <numeric> 1.8138745349181 42.9060759663724 7.99062153766618 7.99062153766618 </numeric>	n nutlin vs dmso nd 6 columns log2FoldChange <numeric> -0.048957609502198 0.336779763086188 0.471627220272488 0.471627220272488 0.471627220272488</numeric>	lfcSE <numeric> 0.234917374476926 0.390079258852283 0.373728201442415 0.373728201442415 0.373728201442415 </numeric>	<pre><numeric> -0.207837733159535 0.863332355927922 1.28370103135627 1.28370103135627 1.28370103135627</numeric></pre>	<numeric> 0.835355669073455 0.387954759325097 0.199246583427946 0.199246583427946 0.199246583427946</numeric>	<numeric> NA 0.576468757253455 NA NA NA NA</numeric>
<pre>> results_ log2 fold Wald test DataFrame DDX11L1 WASH7P MIR6859-3 MIR6859-2 MIR6859-1 TTTY15</pre>	change (MAP): cond p-value: condition with 18698 rows an saseMean <numeric> 1.8138745349181 42.9060759663724 7.99062153766618 7.99062153766618 0.528775936462056</numeric>	n nutlin vs dmso nd 6 columns log2FoldChange <numeric> -0.048957609502198 0.336779763086188 0.471627220272488 0.471627220272488 0.471627220272488 -0.0728353437763118</numeric>	lfcSE <numeric> 0.234917374476926 0.390079258852283 0.373728201442415 0.373728201442415 0.373728201442415 0.131381596913272</numeric>	<pre><numeric> -0.207837733159535 0.863332355927922 1.28370103135627 1.28370103135627 1.28370103135627 -0.494255398863542</numeric></pre>	<numeric> 0.835355669073455 0.387954759325097 0.199246583427946 0.199246583427946 0.199246583427946 0.621125819630669</numeric>	<numeric> NA 0.576468757253455 NA NA NA NA</numeric>
<pre>> results_ log2 fold Wald test DataFrame DDX11L1 WASH7P MIR6859-3 MIR6859-2 MIR6859-1 TTTY15 DDX3Y</pre>	change (MAP): cond p-value: condition with 18698 rows an saseMean <numeric> 1.8138745349181 42.9060759663724 7.99062153766618 7.99062153766618 0.528775936462056 3.28907068171306</numeric>	n nutlin vs dmso nd 6 columns log2FoldChange <numeric> -0.048957609502198 0.336779763086188 0.471627220272488 0.471627220272488 0.471627220272488 -0.0728353437763118 -0.0425806997775099</numeric>	lfcSE <numeric> 0.234917374476926 0.390079258852283 0.373728201442415 0.373728201442415 0.373728201442415 0.131381596913272 0.26181705950827</numeric>	<pre><numeric> -0.207837733159535 0.863332355927922 1.28370103135627 1.28370103135627 1.28370103135627 -0.494255398863542 -0.163153277481993</numeric></pre>	<numeric> 0.835355669073455 0.387954759325097 0.199246583427946 0.199246583427946 0.199246583427946 0.621125819630669 0.870397752363098</numeric>	<numeric> NA 0.576468757253455 NA NA NA NA NA</numeric>
<pre>> results_ log2 fold Wald test DataFrame DDX11L1 WASH7P MIR6859-3 MIR6859-2 MIR6859-1 TTTY15 DDX3Y UTY</pre>	change (MAP): cond p-value: condition with 18698 rows an saseMean numeric> 1.8138745349181 42.9060759663724 7.99062153766618 7.99062153766618 7.99062153766618 0.528775936462056 3.28907068171306 0.610940807886762	n nutlin vs dmso nd 6 columns log2FoldChange <numeric> -0.048957609502198 0.336779763086188 0.471627220272488 0.471627220272488 0.471627220272488 -0.0728353437763118 -0.0425806997775099 -0.0787286282049815</numeric>	lfcSE <numeric> 0.234917374476926 0.390079258852283 0.373728201442415 0.373728201442415 0.373728201442415 0.131381596913272 0.26181705950827 0.132448062510974</numeric>	<pre><numeric> -0.207837733159535 0.863332355927922 1.28370103135627 1.28370103135627 1.28370103135627 1.28370103135627 -0.494255398863542 -0.163153277481993 -0.544414850624692</numeric></pre>	<pre><numeric> 0.835355669073455 0.387954759325097 0.199246583427946 0.199246583427946 0.199246583427946 0.199246583427946 0.621125819630669 0.870397752363098 0.586156028723948</numeric></pre>	<pre><numeric> NA 0.576468757253455 NA NA NA NA NA NA NA</numeric></pre>
<pre>> results_ log2 fold Wald test DataFrame DDX11L1 WASH7P MIR6859-3 MIR6859-2 MIR6859-1 TTTY15 DDX3Y</pre>	change (MAP): cond p-value: condition with 18698 rows an snumeric> 1.8138745349181 42.9060759663724 7.99062153766618 7.99062153766618 7.99062153766618 0.528775936462056 3.28907068171306 0.610940807886762 1.02614847444861	n nutlin vs dmso nd 6 columns log2FoldChange <numeric> -0.048957609502198 0.336779763086188 0.471627220272488 0.471627220272488 0.471627220272488 -0.0728353437763118 -0.0425806997775099 -0.0787286282049815</numeric>	lfcSE <numeric> 0.234917374476926 0.390079258852283 0.373728201442415 0.373728201442415 0.373728201442415 0.131381596913272 0.26181705950827 0.132448062510974 0.179617457358457</numeric>	<pre><numeric> -0.207837733159535 0.863332355927922 1.28370103135627 1.28370103135627 1.28370103135627 0.494255398863542 -0.163153277481993 -0.544414850624692 0.995337995720548</numeric></pre>	<pre><numeric> 0.835355669073455 0.387954759325097 0.199246583427946 0.199246583427946 0.199246583427946 0.62112581963066 0.62112581963069 0.870397752363098 0.586156028723948 0.319571904010689</numeric></pre>	<numeric> NA 0.576468757253455 NA NA NA NA NA NA NA</numeric>


6. You can check a global visualization of how the Human genes changed upon the Nutlin treatment using DESeq2 **plotMA** function.

Notice that you can call a given library's function by calling the name of the library followed by two colons and the name of the function. This helps R in case there are two functions with conflicting names.


The resulting MA figure will plot each gene's fold-change in the Y-axis, and such gene's normalized counts in the X-axis. You can tell **plotMA** to color genes (red are significant, gray are non-significant) by significance by using the same alpha level threshold you defined previously.

You can observe that there are more red dots with positive than negative fold-change. This behavior will depend on the treatment that the cells of your experiment are exposed to.

7. You can plot the normalized read counts for a given gene using DESeq2 built-in function **plotCounts**. You need to tell it the name of the gene as it appears in the original annotation file, as well as the name of the column in the condition file that denotes either "Nutlin" or "DMSO" as the conditions.

CDKN1A

8. Order the gene results in descending order by their adjusted p-values, so that the most significant genes will be on the top of your results table. You can see that the very top gene is CDKN1A or p21, a known gene that controls cell cycle progression directly controlled by the transcription factor p53, which itself is activated by the drug Nutlin.

results_shrunk <- results_shrunk[order(results_shrunk\$padj),]</pre>

> resu	<pre>> results_shrunk <- results_shrunk[order(results_shrunk\$padj),]</pre>					
> resul	> results_shrunk					
log2 fo	log2 fold change (MAP): condition nutlin vs dmso					
	Wald test p-value: condition nutlin vs dmso					
DataFro	, ame with 18698 rows	and 6 columns				
	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
CDKN1A	36048.8376241522	4.54192284028114	0.1071845424448	42.3587109347337	0	0
GDF15	9260.95951552463	4.42731671759538	0.132118048063524	33.4640691754402	1.60677689438861e-245	1.12353874340124e-241
MDM2	10184.0323835414	3.81746099055048	0.118639462740513	32.1544596669719	7.65126113789146e-227	3.56676290044707e-223
TP53I3	2851.02534372242	4.65110008054303	0.1559938773251	29.6288809894222	6.34680644047526e-193	2.21900220175116e-189
BTG2	2722.90420071467	4.00543798200497	0.134935441892802	29.5809233497713	2.62942225656853e-192	7.35449405162219e-189
TTTY15	0.528775936462056	-0.0728353437763118	0.131381596913272	-0.494255398863542	0.621125819630669	NA
DDX3Y	3.28907068171306	-0.0425806997775099	0.26181705950827	-0.163153277481993	0.870397752363098	NA
UTY	0.610940807886762	-0.0787286282049815	0.132448062510974	-0.544414850624692	0.586156028723948	NA
KDM5D	1.02614847444861	0.154595258860339	0.179617457358457	0.995337995720548	0.319571904010689	NA
EIF1AY	0.448613210241605	0.00761739813134928	0.130957811485921	0.0441938778547312	0.964749862051614	NA

9. Filter out only those genes whose adjusted p-value are less than the defined alpha value. Finally, store your significant genes onto a text output file. You can use this file for any downstream analysis you deem appropriate, including gene set enrichment software such as GSEA and others.

```
results_shrunk_sig <- subset(results_shrunk, padj < alphaValue)
write.table(results_shrunk_sig,
    sep = "\t",
    quote = FALSE,
    row.names = TRUE,
    col.names = TRUE,
    "PATH/TO/DIR/Andrysik2017 RNAseq Nutlin results.tsv")</pre>
```

- You can then see the output text file from your bash terminal.

cat Andrysik2017_RNAseq_Nutlin_results.tsv | cut -f1,2,7 | head

baseMean	log2FoldChange	
CDKN1A	36048.8376241522	0
GDF15	9260.95951552463	1.12353874340124e-241
MDM2	10184.0323835414	3.56676290044707e-223
TP53I3	2851.02534372242	2.21900220175116e-189
BTG2	2722.90420071467	7.35449405162219e-189
SULF2	1616.01813455842	2.40523925703524e-114
CYFIP2	4308.40288061541	1.3400750523342e-104
SERPINB5	1540.28640407598	1.59625844868457e-99
FDXR	6229.71368275075	1.09581339899848e-92