Short read workshop - Differential Expression Worksheet

Day 7 - Introduction to Gene Differential
Expression Analysis using DESeq2

Authors:

Jacob Stanley (jacob.stanley@-colorado.edu)

Edited and updated by:
Daniel Ramirez (daniel.ramirezhernandez@-colorado.edu) - 2022
Rutendo Sigauke (rutendo.sigauke @colorado.edu) - 2023

Additional DESeq2 resources:

https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html

Introduction:

Here will use those gene counts tables as input for the software DESeq?2 to answer the
guestion: What genes are statistically significantly changed upon an experimental condition? In
particular, we will explore a dataset from a real experiment published (Andrysik 2017 et al. doi:
10.1101/gr.220533.117). You will use a gene count table that we already prepared for you, from
an experiment where Human colon cancer cells (HCT116) were treated with either the vehicle
DMSO, or with the p53-activator drug Nutlin.

The purpose of DESeq?2 is to identify which genomic loci demonstrate a statistically significant
difference in expression level between two or more conditions (referred to as “gene differential
expression analysis”). It does so by modeling the variance in expression level across the full
range of baseline expression levels present in the data and determines if the differential
expression level for each locus is significantly greater than this variance. DESeq2 takes as an
input the unnormalized count values for each (non-overlapping) loci in each sample. We
recommend that you use featureCounts() to compute count values. DESeq?2 performs best
when provided multiple replicates per experimental condition (preferably 5+ replicates), in order
to get an accurate estimation of within condition variance. DESeq?2 is only to be used for non-
overlapping, unique genomic loci. If one’s aim is to compute differential expression of
transcripts, DESeq2 is not appropriate.

Note: All commands are executed within the R environment. We will be executing them
manually, from the R command line, but they can also be compiled into a single script to be
executed together.


mailto:jacob.stanley@colorado.edu
mailto:daniel.ramirezhernandez@colorado.edu
mailto:rutendo.sigauke@colorado.edu
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html

Short read workshop - Differential Expression Worksheet

--- FILES ARE IN THE DATA FOLDER ON GITHUB FOR DAY7---

Below are the featureCounts output files as well as the condition table we will be using. Get
these files onto your own local machine. We will use your local machine installation of RStudio
and use these files as inputs.

/path/to/day07/data

Andrysik2017_counts.tsv
Andrysik2017_samples.tsv

Shown below is the top of the file Andrysik2017_counts.tsv, showing the raw unnormalized
read counts across the first genes of the annotation file.

SRR4098430 SRR4098431 SRR4098432 SRR4098433
DDX11L1 3

WASH7P 31
MIR6859-3 15
MIR6859-2 15

MIR6859-1 13
MIR6859-4 13
MIR1302-2

MIR1302-11

MIR1302-9

Shown below is the contents of the Andrysik2017_samples.tsv file. It has four columns, each
with information regarding each of the RNA-seq datasets. This information was used by
featureCounts, and will be used again by DESeq?2 to know which datasets are replicates of each
other, and against what other replicates to make any comparison.

bamfilename SRR p53 celltype condition

SRR4098430.trimmed.sorted.bam SRR4098430 p53_wild hct dmso
SRR4098431.trimmed.sorted.bam SRR4098431 p53_wild hct dmso

SRR4098432.trimmed.sorted.bam SRR4098432 p53_wild hct nutlin
SRR4098433.trimmed.sorted.bam SRR4098433 p53_wild hct nutlin

--- USING DESEQ2 WITHIN RSTUDIO ---

We will use DESeq2 with the RStudio on your local computer. First, we need to tell RStudio to
load the DESeq_? library (if you have not yet installed DESeq2, let a class helper know. Be
aware though that installing DESeq?2 takes some time as it also needs several dependencies
installed as well). Loading DESeq2 will prompt some red messages, and they should end with R
normal “>" prompt symbol.



Short read workshop - Differential Expression Worksheet

> library(DESeq2)

Loading required package:
Loading required package:
Loading required package:
Loading required package:

S4Vectors
stats4
BiocGenerics
parallel

Attaching package: ‘BiocGenerics’

The following objects are masked from ‘package:parallel’:

1. Load the two input files using read.table():
a. The conditions table contains the sample information.

> conditionsTableFile <- "~/Desktop/sr2023/day7/Andrysik2017_samples.tsv"
> conditionsTable <- read.table(conditionsTableFile,
+ sep = "\t",
+ header = TRUE)
> conditionsTable
bamfilename SRR p53 celltype condition
1 SRR4@98430.trimmed.sorted.bam SRR4098430 p53_wild hct dmso
2 SRR4098431.trimmed.sorted.bam SRR4098431 p53_wild hct dmso
3 SRR4098432.trimmed.sorted.bam SRR4098432 p53_wild hct nutlin
4 SRR4098433.trimmed.sorted.bam SRR4098433 p53_wild hct nutlin
b. Load the counts tables. The column names should match the names (SRR) in
the conditions table
> geneCountsTableFile <- "~/Desktop/sr2023/day7/Andrysik2017_counts.tsv"
> geneCountsTable <- read.table(geneCountsTableFile,
+ header = TRUE, sep = "\t", fill = TRUE,
+ stringsAsFactors = FALSE, na.strings = "")
> head(geneCountsTable)
SRR4098430 SRR4098431 SRR4@098432 SRR4098433
DDX11L1 4 1 3 0
WASH7P 55 24 31 61
MIR6859-3 8 1 13 10
MIR6859-2 8 1 13 10
MIR6859-1 8 1 13 10
MIR6859-4 8 1 13 10




Short read workshop - Differential Expression Worksheet

2. Next, load the two inputs onto DESeq2 using the following function. You can then type
the variable dds and see some information of its contents, including its variable type, the
number of genes that have counts (e.g. 26,485), and some of the gene and datasets
labels.

dds <- DESegDataSetFromMatrix(countData = geneCountsTable,
colData = conditionsTable,
design = ~ condition)

> dds <- DESegDataSetFromMatrix(countData = geneCountsTable,

+ colData = conditionsTable,
+ design = ~ condition)

> dds

class: DESegDataSet

dim: 26485 4

metadata(l): version

assays(1l): counts

rownames(26485): DDX11L1 WASH7P ... GOLGAZP3Y GOLGAZP2Y
rowData names(@):

colnames(4): SRR4098430 SRR4098431 SRR4098432 SRR4098433
colData names(5): bamfilename SRR p53 celltype condition

Optionally, you can remove all the gene entries that have low counts, such as those
gene entries that have mostly zero counts. If you do not remove them, DESeq2 will
automatically remove them internally while doing its calculations. Notice that printing the
dds variable again gives us a smaller number of genes with counts (e.g. 18,698).

dds <- dds[rowSums(counts(dds)) > 1,]

> dds <- dds[rowSums(counts(dds)) > 1,]

> dds
class: DESeqgDataSet
dim: 18698 4

metadata(l): version

assays(1l): counts

rownames(18698): DDX11L1 WASH7P ... KDM5D EIF1AY

rowData names(@):

colnames(4): SRR4098430 SRR4098431 SRR4098432 SRR4098433
colData names(5): bamfilename SRR p53 celltype condition




Short read workshop - Differential Expression Worksheet

3. Run DESeq2’s main function DESeq on the dds variable you created. DESeq2 will
internally do several actions:
a. it will estimate each dataset size scale factors,
b. it will estimate dispersion,
c. it will fit a generalized linear model, and
d. it will calculate each gene’s fold change.

DEdds <- DESeq(dds)

> DEdds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing

Check what size factors were estimated for each of the 4 HCT116 datasets. Check how
the total number of gene-assigned reads changes to a more homogeneous number with
the normalization (e.g. between 20 and 23 million counts).

sizeFactors(DEdds)
colSums(counts(DEdds, normalized = FALSE))
colSums(counts(DEdds, normalized = TRUE))

> sizeFactors(DEdds)

SRR4098430 SRR4098431 SRR4098432 SRR4098433
1.2276148 ©.9455801 1.0205486 ©.8583701
> colSums(counts(DEdds, normalized = FALSE))
SRR4098430 SRR4098431 SRR4098432 SRR4098433
28661527 20467240 21644243 17631625
> colSums(counts(DEdds, normalized = TRUE))
SRR4098430 SRR4098431 SRR4098432 SRR4098433
23347329 21645168 21208438 20540819




dispersion

1e-04 1e+00

1e-08

Short read workshop - Differential Expression Worksheet

You can check the dispersion estimates with a simple DESeq2 function. You want to see
that the estimates are monotonically descending and that most data points (blue) are
nearby the fitted line (red).

plotDispEsts(DEdds, main = "Dispersion Estimates™)

Dispersion Estimates

® gene-est
o fitted
. . e final
T | 1
1 100 10000

mean of normalized counts

4. Define the alpha value that DESeq?2 will need to assign statistical significance, as well as

the names of the two experimental conditions we want to compare against each other.

alphaValue <- 0.05
contrast <- c("condition", "nutlin", "dmso")

Extract statistically significant results, and do DESeq2 special log fold-change shrinkage,
which is useful for visualization purposes. DESeq2 will let you know that it is using the
normal algorithm for doing the shrinkage, and that there are newer algorithms if you
want to test them out as well. They require independent library installation.

results <- results(DEdds,
alpha = alphaValue,
contrast = contrast)

results_shrunk <- 1fcShrink(DEdds,
contrast = contrast,
res = results)



Short read workshop - Differential Expression Worksheet

> results <- results(DEdds, alpha
> results_shrunk <- 1fcShrink(DEdds, contrast = contrast, res
using 'normal' for LFC shrinkage, the Normal prior from Love et al (2014).

alphaValue, contrast = contrast)

results)

Note that type='apeglm' and type='ashr' have shown to have less bias than type="normal'.

See ?1fcShrink for more details on shrinkage type, and the DESeqg2 vignette.

Reference: https://doi.org/10.1093/bioinformatics/bty895

See that both unshrunk and shrunk results have identical nominal and adjusted p-
values. The shrinkage only affects the fold-change estimation values.

> results
log2 fold change (MLE): condition nutlin vs dmso
Wald test p-value: condition nutlin vs dmso
DataFrame with 18698 rows and 6 columns

baseMean log2FoldChange 1fcSE stat pvalue padj

<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
DDX11L1 1.8138745349181 -0.541154060047158 2.60373345985144 -0,207837733159535 @.835355669073455 NA
WASH7P 42.9060759663724 0.517353622802487 0.599251978974456 @.863332355927922 ©.387954759325097 ©.576468757253455
MIR6859-3 7.99062153766618  1.65086203545657 1.286@1753455973  1.28370103135627 ©.199246583427946 NA
MIR6859-2 7.99062153766618 1.65086203545657 1.286@1753455973  1.283701@3135627 ©.199246583427946 NA
MIR6859-1 7.99062153766618 1.65086203545657 1.28601753455973 1.28370103135627 ©.199246583427946 NA
TTTY15 0.528775936462056 -2.41242479379036 4.88092755149934 -0.494255398863542 ©.621125819630669 NA
DDX3Y 3.28907068171306 -@.369751046194624 2.26628022373276 -0.163153277481993 @.870397752363098 NA
uTy 0.610940807886762 -2.64939293796763 4.86649645013828 -0.544414850624692 @.586156028723948 NA
KDM5D 1.02614847444861  3.59250404345603 3.60933075889997 ©.995337995720548 @.319571904010689 NA
EIF1AY 0.448613210241605 ©.220163642606723 4.98176791207185 @.0441938778547312 ©.964749862051614 NA
> results_shrunk
log2 fold change (MAP): condition nutlin vs dmso
Wald test p-value: condition nutlin vs dmso
DataFrame with 18698 rows and 6 columns

baseMean logZ2FoldChange 1fcSE stat pvalue padj

<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
DDX11L1 1.8138745349181 -0.048957609502198 0.234917374476926 -@.207837733159535 ©.835355669073455 NA
WASH7P 42.9060759663724  ©.336779763086188 ©.390079258852283 @.863332355927922 @.387954759325097 0.576468757253455
MIR6859-3 7.99062153766618 ©0.471627220272488 @.373728201442415  1.28370103135627 @.199246583427946 NA
MIRG859-2 7.99062153766618 ©.471627220272488 0.373728201442415 1.28370103135627 ©.199246583427946 NA
MIRG859-1 7.99062153766618 ©.471627220272488 ©.373728201442415 1.28370103135627 ©.199246583427946 NA
TTTY15 0.528775936462056 -@.0728353437763118 ©.131381596913272 -@.494255398863542 ©.621125819630669 NA
DDX3Y 3.28907068171306 -0.0425806997775099 ©.26181705950827 -@.163153277481993 @.870397752363098 NA
uTY 0.610940807886762 -0.0787286282049815 @.132448062510974 -0.544414850624692 0.586156028723948 NA
KDM5D 1.02614847444861  ©.15459525886@339 ©.179617457358457 @.995337995720548 ©.319571904010689 NA
EIF1AY 0.448613210241605 ©.00761739813134928 ©.130957811485921 @.0441938778547312 ©.964749862051614 NA

6. You can check a global visualization of how the Human genes changed upon the Nutlin
treatment using DESeq2 plotMA function.

Notice that you can call a given library’s function by calling the name of the library
followed by two colons and the name of the function. This helps R in case there are two
functions with conflicting names.

The resulting MA figure will plot each gene’s fold-change in the Y-axis, and such gene’s
normalized counts in the X-axis. You can tell plotMA to color genes (red are significant,
gray are non-significant) by significance by using the same alpha level threshold you

defined previously.




Short read workshop - Differential Expression Worksheet

You can observe that there are more red dots with positive than negative fold-change.
This behavior will depend on the treatment that the cells of your experiment are exposed
to.

DESeq2: :plotMA(results_shrunk,
alpha = alphaValue,

main = "RNA-seq\nHCT116\nDMSO vs Nutlin",
xlab = "mean of normalized counts",
ylab = "log fold change",
ylim = c(-5,5))
RNA-seq
HCT116

DMSO vs Nutlin

log fold change
0
|

1 100 10000

mean of normalized counts

7. You can plot the normalized read counts for a given gene using DESeq2 built-in function
plotCounts. You need to tell it the name of the gene as it appears in the original
annotation file, as well as the name of the column in the condition file that
denotes either “Nutlin” or “DMSO” as the conditions.

gene <- "CDKN1A"
plotCounts(DEdds, gene,
intgroup = "condition",
normalized = TRUE)



normalized count

5000

50000

20000

CDKN1A

Short read workshop - Differential Expression Worksheet

dmso

nutlin

group

8. Order the gene results in descending order by their adjusted p-values, so that the most
significant genes will be on the top of your results table. You can see that the very top
gene is CDKN1A or p21, a known gene that controls cell cycle progression directly
controlled by the transcription factor p53, which itself is activated by the drug Nutlin.

results_shrunk <- results_shrunk[order(results_shrunk$padj), ]

> results_shrunk <- results_shrunk[order(results_shrunk$padj), ]

> results_shrunk
log2 fold change (MAP): condition nutlin vs dmso
Wald test p-value: condition nutlin vs dmso
DataFrame with 18698 rows and 6 columns

CDKN1A
GDF15
MDM2
TP53I3
BTG2
TTTY15
DDX3Y

uty
KDM5D

baseMean

<numeric>
36048.8376241522
9260.95951552463
10184 .0323835414
2851.02534372242
2722.90420071467

0.528775936462056
3.28907068171306
0.610940807886762
1.02614847444861

log2FoldChange
<numeric>
4.54192284028114
4.42731671759538
3.81746099055048
4.65110008054303
4.00543798200497

-0.0728353437763118
-0.0425806997775099
-0.0787286282049815 0.132448062510974 -0.544414850624692

1fcSE

<numeric>
0.1071845424448
0.132118048063524
0.118639462740513
©.1559938773251
0.134935441892802

stat

<numeric>

42 .3587109347337
33.4640691754402
32.1544596669719
29.6288809894222
29.5809233497713

0.131381596913272 -0.494255398863542
0.26181705950827 -0.163153277481993

0.154595258860339 0.179617457358457 @.995337995720548
EIF1AY 9.448613210241605 0.00761739813134928 0.130957811485921 0.0441938778547312

pvalue
<numeric>
4]

1.60677689438861e-245
7.65126113789146e-227
6.34680644047526e-193
2.62942225656853e-192

0.621125819630669
0.870397752363098
0.586156028723948
0.319571904010689
0.964749862051614

padj

<numeric>

4]
1.12353874340124e-241
3.56676290044707e-223
2.21900220175116e-189
7.35449405162219¢-189
NA

NA

NA

NA

NA




Short read workshop - Differential Expression Worksheet

9. Filter out only those genes whose adjusted p-value are less than the defined alpha
value. Finally, store your significant genes onto a text output file. You can use this file f

or

any downstream analysis you deem appropriate, including gene set enrichment software

such as GSEA and others.

results_shrunk_sig <- subset(results_shrunk, padj < alphaValue)

write.table(results_shrunk_sig,
sep = "\t",
quote = FALSE,
row.names = TRUE,
col.names = TRUE,
"PATH/TO/DIR/Andrysik2017_ RNAseq_Nutlin_results.tsv")

You can then see the output text file from your bash terminal.

cat Andrysik2017 RNAseq Nutlin_results.tsv | cut -f1,2,7 | head

baseMean 1log2FoldChange

CDKN1A 36048 .8376241522
GDF15 9260.95951552463
MDM2 10184 .0323835414
TP5313 2851.02534372242
BTG2 2722 .90420071467
SULF2 1616.01813455842
CYEIPZ 4308.40288061541
SERPINBS 1540.28640407598
FDXR 6229.71368275075

.12353874340124e-241
.56676290044707e-223
.21900220175116e-189
.35449405162219%e-189
.40523925703524e-114
.3400750523342e-104
.59625844868457e-99
.09581339899848e-92

/
1
3
2
7
2
1
1
1

10



