
Git, GitHub, and basic Bash worksheet

Author: Lynn Sanford, 2023

What is Git?

Git is a version control software. Think of it like a long-standing and well-

developed execution of something like the history in Google Docs, where you can

see when and where and who changed something in a document. It allows you to

keep track of and document your changes to files, keep different versions of files

at the same time, and revert changes if necessary.

We won’t go much into the functionality of git until later in the workshop. What

we’ll use a lot is…

GitHub

GitHub is a web-based implementation of git that provides cloud storage for git

projects (called repositories or repos). It also facilitates multiple people working

with a git repository at the same time. Again, think of it kind of like a series of files

and folders in Google Drive, but much easier to integrate with the command-line

and scripting tools that we use in this class and more broadly in bioinformatics.

All of our class materials are on a class website, which isn’t super easily accessed

on the back end. It can and will be updated regularly throughout the class, but it’s

harder for every one of our teachers and TAs to fix typos or amend data files on

the fly.

Unlike the website, anyone who has edit access (i.e. anyone in the DnA Lab) to the

class GitHub repository can change a file in it at any time. For that reason, the

GitHub repository will be the primary source for class materials. This worksheet

will take you through the structure of the GitHub repo and how to interface with

it.

This year’s GitHub repository is here: https://github.com/Dowell-Lab/sr2023

https://github.com/Dowell-Lab/sr2023

1) In your browser, go to the GitHub repository

https://github.com/Dowell-Lab/sr2023

There’s a lot here, but the main thing to notice is that the repository is laid out in

a way that’s familiar. It looks like the filesystem on your computer. You can also

navigate through the folders and subfolders (also called directories and

subdirectories) like you would on your computer. Take a minute to explore.

Note that when you start going into subdirectories, an explorer sidebar pops up

on the left and a path appears on the top. You can click on the path to navigate to

higher (parent) directories, but also pay attention to its structure. It’ll be similar on

the command line.

https://github.com/Dowell-Lab/sr2023

2) Open a terminal and, if you can, log onto the AWS.

Open your terminal program.

If you successfully got onto the AWS previously, do so again with the command

ssh <github_username>@<aws_ip>

If you’re still troubleshooting getting onto the AWS, it’s fine to do this worksheet

on your local computer within your terminal.

3) Do some basic looking around on the command line

In your terminal, whether on your computer or the AWS, type hostname and

see what it outputs. The output will be different depending on which system

you’re on.

Type pwd This shows you what directory you’re currently in.

Type ls This lists the contents of your current directory. Since you’ve created

no files or folders, it should be empty, so nothing should display.

4) Clone the GitHub class repo

Navigate back to the top of the repo in your browser, or click the link above again.

Click on the green button that says “<> Code”, make sure the dropdown has

“HTTPS” highlighted, and copy the link it gives you. This is the easiest way to clone

a repository that you don’t have the rights to edit.

Navigate back to your terminal and type git clone then paste the link and hit

enter.

Note: If you’re using the Ubuntu WSL app on a PC, you cannot paste with

Ctrl-V. By default pasting is through a right-click.

This command will then clone (create a copy of) the sr2023 repository in your

current working directory.

5) Navigate around the repository

Use the command cd (change directory) to navigate into the repository. If you’re

going into subdirectories, type the name of the subdirectory. If you want to go

back to the previous parent directory (one higher in the directory structure), use

two dots (cd ..).

You’ll notice that directories are shown in color, usually blue, text files are in

white, and other types of files may be other colors. Your color scheme may look

different than mine.

If you get lost and you need to go back to your home directory, type cd ~

As you investigate, make use of the pwd command. Go back and forth between

the paths that you see on the command line and the paths that you see when

exploring the same repo in the browser.

6) Tab complete

Go back to your home directory, then type cd s and hit Enter. What do you see?

Now type cd s and before hitting Enter, hit Tab. What happens?

This is a beautiful feature of unix systems called Tab complete. Tab complete is

your friend. The more you get comfortable with it, the less time it will take you to

navigate around filesystems.

Tab complete will go to the next unique position in a string. So in your home

directory, you only have one directory, sr2023, and Tab complete will

automatically fill it in.

Navigate into sr2023 again, and type cd d, then hit Tab. This completes until it

hits a character with multiple options. If you hit Tab twice, a list of all options is

displayed that start with what you’ve already typed/complete. Then input which

characters you want, and you can hit Tab again.

7) Copy a file from the repository

When starting out using the command line, you may get confused about what

computer you are currently running commands on. The prompt that you get at

the beginning of a line should help you (i.e. the),

but we’re going to make it one step easier.

You may notice that while my command prompt is a brownish color, yours is most

likely white. Let’s change that – it’ll make the next few days easier on you.

In the repository, under day01/scripts/, there’s a file called .bash_profile.

You will not be able to see this file with only the ls command, since the . at the

start indicates it’s a hidden file. You can see it by typing ls –al (more on that

tomorrow).

In order to get a colored command prompt, you need to copy this file to your

home directory on the AWS. For this you use the rsync command, which has the

syntax:

rsync <source_directory> <destination_directory>

Tab Tab

Tab Tab

Tab Tab

Tab Tab

You can use this command in a number of ways:

 With absolute paths (your current working directory is irrelevant):

o Note: these are functionally equivalent, since ~ is a shortcut for your

home directory

 From the ~/sr2023/day01/scripts/ directory:

o Absolute path:

o Relative path (your home directory is 3 parent directories above this

one):

 From your home directory (remember . indicates your current directory):

8) Logout and log back on

Now you have a copy of the .bash_profile file in your AWS home directory,

and the next time you log on, your prompt color will automatically change. Let’s

do that now.

Either logout or exit will log you out of the AWS. Once you run that

command, you will be back on your personal computer. Use the hostname

command to verify.

Now, log back onto the AWS. The easiest way to do this is by using the up key on

your keyboard. Up and down scroll through your command history. Hit up until

you find your version of the ssh <github_username>@<aws_ip>

command and hit enter. You should log back onto the AWS and see a brown

prompt, indicating you are now back on the super computer.

Once you’re familiar enough with Vim to edit files (later this day), you can come

back and edit the .bash_profile file if you’d like to change the prompt color

from brown to something else. Instructions will be in an extra section at the end

of this worksheet.

9) Pull from the repository

When content on the remote repo (the one hosted on Github) changes, you’ll

need to update the copy on your computer or on the AWS. To do this, make sure

you’re somewhere in the repo (cd into sr2023/) and type git pull. If

nothing has changed, it will tell you you’re up to date. If something has changed,

it’ll let you know what has.

You will regularly pull over the two weeks of the course.

10) Log out from the AWS

When you’re done with your session on a super computer, log out before you

close the window, just as you did above.

Extra: Change the prompt color:

The .bash_profile file contains instructions for initiation of your instance on

the AWS super computer. For your personal computer or a different super

computer, you may need to edit a .bashrc file instead, but ignore that for the

AWS.

Opening the .bash_profile file that I’ve provided to you shows the following:

Each of these lines does something different, but the one at the bottom is the one

that specifies how your command prompt looks. The text color for the

username@hostname is encoded by the 33 toward the beginning of the line, and

the text color for the current working directory is encoded by the 34 a little

farther in. You can change the color to whatever you want by editing the number

based on the following table.

