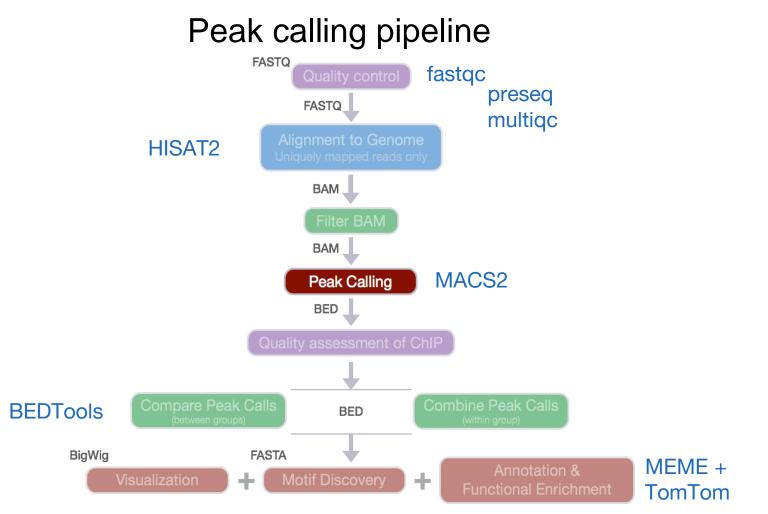
Day 9: ChIP-seq, MACS and BEDTools

Rutendo Sigauke and Ariel Eraso


Recap of the videos

- 1. ChIP-seq introduction
- 2. Evaluating ChIP-seq data
- 3. Peak calling with MACS
- 4. MEME Suite introduction
- 5. BEDTools introduction
- 6. ATAC-seq overview

Learning Objectives

Downstream analysis of ChIP-seq and ATAC-seq data

- Demonstrate the use of a **peak calling program MACS2** to identify genomic regions with robust signal in each of these data types
 - control/input
 - ENCODE Blacklist
- Visualize the raw data and corresponding called peaks
- Downstream analyses
 - Comparing peaks to other features (e.g genes) : using BEDTools
 - Motif discovery (MEME)

https://hbctraining.github.io/Intro-to-ChIPseq/lessons/05_peak_calling_macs.html

ChIP-seq peak calling for enrichment

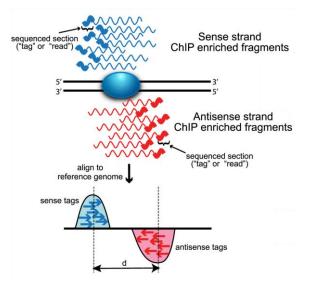
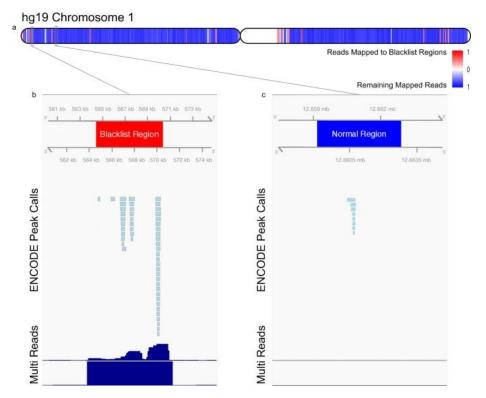


Image source: Wilbanks and Faccioti, PLoS One 2010

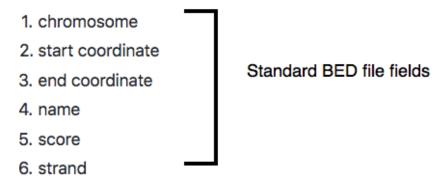
ChIP-seq identifies two type of enrichment


- **Broad peaks:** eg., histone modification. Here we are looking for broad peaks that cover entire gene bodies
- Narrow peak: eg., transcription factor binding. Here we are looking for regions of higher amplitude compared to background

MACS genomic input/control

Controls are important!

- ChIP-seq and ATAC-seq are protocols that produce **background noise** as well as **meaningful signal**
 - Therefore, you need controls to not call background noise as peaks
- p/q value cutoffs matter and should vary based on your experiment
- Know your data type: your experiment should inform the parameters of the peak caller
- Blacklist regions: some genomic regions almost always show up in these protocols so remove these regions using a Blacklist


Blacklist regions should be removed

These regions contain repetitive regions across the genome and almost always are enriched in ChIP-seq data.

https://www.nature.com/articles/s41598-019-45839-z

MACS output

- 7. signalValue Measurement of overall enrichment for the region
- 8. pValue Statistical significance (-log10)
- 9. qValue Statistical significance using false discovery rate (-log10)
- 10. peak Point-source called for this peak; 0-based offset from chromStart

narrowPeak specific fields

Image: https://hbctraining.github.io/Intro-to-ChIPseq/lessons/05_peak_calling_macs.html

MACS2 peak calling recommendations

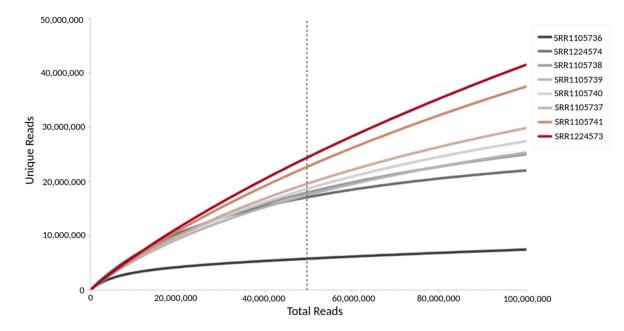
Data type	q value	broad and control flags	Reasoning
ChIP-seq for TF	<0.01	control <input/>	TF ChIP-seq often has very abrupt, small peaks that are well defined, so narrow peaks is necessary, and a less stringent adjusted p value is likely needed than for other data types
ChIP-seq for histone marks	<0.0001	broad control <input/>	Histone marks are often broadly dispersed without very well defined edges so a broad peak tag is useful but a very low p value helps differentiate between background and data
ATAC-seq	<0.0001	control <input/>	ATAC-seq should show peaks at open chromatin across the genome similarly to histone ChIP-seq data, but with more abrupt peaks, so no broad peak tag is needed

Processing ChIP-seq Data

- 1. Let us pre-process ChIP-seq data and perform QC SR2022_worksheet_day9_preprocessing_ChIP-seq
 - a. Map reads
 - b. Perform QC
- 2. Let's run MACS to call peaks on our bam files with a genomic input.
 - * Note there is an input and anti-BACH1/GABPA ChIP-seq bam files.
 - a. Call peaks with MACS

SR2022_worksheet_day9_MACS

Usage


macs2 [-h] [--version]

{callpeak,bdgpeakcall,bdgbroadcall,bdgcmp,bdgopt,cmbreps,bdgdiff,filterdup,predictd,pileup

Example for regular peak calling: macs2 callpeak -t ChIP.bam -c Control.bam -f BAM -g hs -n test -B -q 0.01

Example for broad peak calling: macs2 callpeak -t ChIP.bam -c Control.bam --broad -g hs --broadcutoff 0.1

Preseq : Measures library complexity

Complexity = # of unique reads / total reads sequenced

\$ preseq c_curve -o complexity_output.txt input.sorted.bam

Using Bedtools

BEDTools Documentation <u>https://bedtools.readthedocs.io/en/latest/</u>

Additional Resources

Other Peak Callers:

- Fstitch: <u>https://github.com/Dowell-Lab/FStitch</u>
- SICER: <u>https://zanglab.github.io/SICER2/</u>
- PeakSeq: https://www.nature.com/articles/nbt.1518
- Hpeak: <u>https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-369</u>
- PeakRanger: <u>https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-139</u>

BEDTools tutorial: <u>http://quinlanlab.org/tutorials/bedtools/bedtools.html</u>