Day 8: Advanced DESeq2 Experimental Design (Worksheet)
By: Samuel Hunter

We will be working through some “advanced” DESeq2 designs. On your first day with DESeq2,
you learned how to run a pairwise comparison and interpret/visualize your results. But our
experimental designs are often more complex than just a simple pairwise comparison. How can
we incorporate more design elements into DESeq2?

Download all files in /scratch/Shares/public/sread2022/data_files/day8 from AWS to your local
computer. You’ll need to replace all of the paths to these files in the instructions with the local
path you stored them to. So, for the first step, | would replace
“/path/to/your/files/batch_example_counts.txt “ with
“/Users/samuelhunter/sread2022/day8/data_files/batch_example_counts.txt”

Part 1: Batch Effect Correction

1. Load in the counts file for batch correction, along with our DESeq2 library:
library(DESeq2)

countdata <- read.delim("/path/to/your/files/batch_example_counts.txt",
+ sep="\t", header=TRUE)

2. Load in the metadata file for batch correction:
metadata <- read.csv("/path/to/your/files/batch_example_metadata.csv",

+ sep=",",header=TRUE)

3. Orgahiie the counts file into a DESeq2 compatible mafrix, and check the metadata file:
> head(countdata)
GeneID TranscriptID Length D21_V_1 D21_IFN_1 D21_V_2 D21_IFN_2 D21_V_3 D21_IFN_3

vV Vv

v

rownames(countdata) <- countdatal, 2]
countdata <- countdatal,-c(1,2,3)]
head(countdata)

D21_V_1 D21_IFN_1 D21_V_2 D21_IFN_2 D21_V_3 D21_IFN_3
DQ459430 274895 310070 338941 319945 224632 304592
DQ516784 19636 23099 25111 3883 16106 21587
DQ516752 67338 80546 84636 36315 54069 73629
DQ668364 9171 10620 11229 10056 7321 10037
DQ883670 1 5 2 %] 2 5
EF011062 9 15 19 27 12 16

1 ERCC-00002 DQ459430 1061 274895 310070 338941 319945 224632 304592
2 ERCC-00003 DQ516784 1023 19636 23099 25111 3883 16106 21587
3 ERCC-00004 DQ516752 523 67338 80546 84636 36315 54069 73629
4 ERCC-00009 DQ668364 984 9171 10620 11229 10056 7321 10037
5 ERCC-00012 DQ883670 994 1 5 2 0 2 5
6 ERCC-00013 EF011062 808 9 15 19 27 12 16
>
>
>

> head(metadata)
Name batch treatmentIFN

1 D21_V_1 1 control
2 D21_IFN_1 1 IFN
3 D21_V_2 2 control
4 D21_IFN_2 2 IFN
5 D21_V_3 3 control
6 D21_IFN_3 3 IFN

4. View the model matrix. The rows of the model matrix match up with the rows of your

metadata:
model.matrix(~treatmentIFN,data = metadata)
(Intercept) treatmentIFNIFN

\%

1 1 @
2 1 1
3 1 @
4 1 1
5 1 %]
6 1 1
attr(,"assign™)

[1] 01

attr(,"contrasts")
attr(, "contrasts")$treatmentIFN
[1] "contr.treatment"

5. For now we aren’t using batch information, only sample treatment information.

6. Run DESeq2:
> dds <- DESegDataSetFromMatrix(countData=countdata,colData = metadata,design = ~treatmentIFN)
> dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing

7. View “NM_016817" in results file. Take note of the Log2FoldChange and LfcSE values

(This is a strong IFN response gene)

> res <- results(dds)

> res[rownames(res)=="NM_016817",]

log2 fold change (MLE): treatmentIFN IFN vs control

Wald test p-value: treatmentIFN IFN vs control

DataFrame with 1 row and 6 columns
baseMean log2FoldChange 1fcSE stat pvalue padj
<numerics> <numeric> <humeric> <numeric> <humeric> <numeric>

NM_Q16817 17829.2724560213 0.534463855509179 @.113379616531156 4.71393246741414 2.42981222179023¢-06 0.000190503029223199
Visualize the results with an MA plot:
> plotMA(res)
>
And get a summary printout of the results
> summary(res)

8. Now fetch the normalized counts for each sample, and make a plot of this gene. You'll
notice some substantial batch effects

> vsd ;— vs%éddsi—
> boxplot(assay(vsd)['NM_016817',] ~ metadatal, 'treatmentIFN'] + metadatal, 'batch'])

=
3
i)
T a —_—
L
T =
w
=
<
=
Zz
=
-
2 o
= o=] —
g =
w
w
[
o
i
o

T T T T T T
control.1 IFN.1 control.2 IFN.2 control.3 IFN.3

metadatal[, "treatmentlFN"] : metadatal, "batch™]

9. You can also use a PCA plot to view this on a global scale:
plotPCA(vsd,intgroup="batch")

10. We can correct for these effects by including another term in our design matrix. Take a
look at our new model matrix:

> model.matriX(~batch+treatmentIFN,data = metadata)-
(Intercept) batchB batchC treatmentIFNIFN

1 1 0 0 0
2 1 0 0 1
3 1 1 0 @
4 1 1 @ 1
5 1 0 1 7}
6 1 0 1 1
attr(, "assign™)

[1]0112

attr(, "contrasts")
attr(, "contrasts")$batch
[1] "contr.treatment"

attr(, "contrasts")$treatmentIFN
[1] "contr.treatment"

11. Notice that we’ve included a new term which additionally accounts for the batch effect.

Now run DESeq?2 again with this new design formula. View “NM_016817" again.

> dds <- DESeqDataSetFromMatrix(countData=countdata,colData = metadata,design = ~batch+treatmentIFN)

> dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

> res <- results(dds)

> res[rownames(res)=="NM_016817",]

log2 fold change (MLE): treatmentIFN IFN vs control

Wald test p-value: treatmentIFN IFN vs control

DataFrame with 1 row and 6 columns
baseMean log2FoldChange 1fcSE stat pvalue padj
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>

NM_016817 17829.2724560213 @.535563860873358 0.0863779947657732 6.20023493628926 5.63789371097974e-10 8.52226140858758¢-08
You'll notice that the same gene now has a smaller IfcSE but a similar Log2FoldChange. This is

because we’ve explained some of that standard error by the differences in basal levels in each

batch. But, each batch responded similarly, so the log2FC doesn’t shift much. We can now more
confidently call this gene as significant (padj is much smaller now)

Batch correction will help with finding significant calls (more likely true positives) while avoiding
batch-specific significant calls (which are likely false positives).

Visualize the results with an MA plot and summarize results as before:
> summary(res)

> plotMA(res)
>

Part 2: Within-group contrasts
1. Load in the counts file for contrast

> countdata <- read.delim("/path/to/your/files/contrast_example_counts.txt",
+ sep="\t", header=TRUE)

2. Load in the metadata file:
> metadata <- read.csv("/path/to/your/files/contrast_example_metadata.csv",
+ sep=",",header=TRUE)
3. View the metadata and counts file. Notice that we have multiple values under the
“Person” column.

> (metadata)

Name batch person
1 Eli_A A E1li
2 ELli_B B Eli
3 E1li_C C E1li
4 Elizabeth_A A Elizabeth
5 Elizabeth_B B Elizabeth
6 Elizabeth_C C Elizabeth
7 Eric_A A Eric
8 Eric_B B Eric
9 Eric_C C Eric
10 Ethan_A A Ethan
11 Ethan_B B Ethan
12 Ethan_C C Ethan

4. Run DESeq2 (We’'ll leave batch correction out for now):
> rownames(countdata) <- countdatal,1]
> couhtdata <- countdatal,-c(1,2,3,4,5,6)]
> dds <- DESegDataSetFromMatrix(countData=countdata,colData = metadata,design = ~person)
> dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing

5. Generate results file using a contrast. Compare “Ethan” and “Elizabeth” and get some

summary results:
> res <- results(dds,contrast = c("person","Ethan","Elizabeth"))
> plotMA(res)
> summary(res)

> res <- results(dds,contrast = c("person","Ethan","Elizabeth"))
> head(res)
log2 fold change (MLE): person Ethan vs Elizabeth
Wald test p-value: person Ethan vs Elizabeth
DataFrame with 6 rows and 6 columns
baseMean log2FoldChange 1fcSE stat pvalue
<numerics> <numeric> <numeric> <numeric> <numerics>

NR_046018 1.07449047357762 ©.107998448013946 1.82689250517053 ©.0591159292121926 ©.952859771153804

padj
<numeric>
NA

NR_024540 75.0618625564708 0.0657629529542215 ©.448914355158083 0.146493317040537 0.883531965236386 0.999809615249678

Notice in the first lines of the results printout, it says that the log2 fold change and Wald test
are performed comparing Ethan and Elizabeth, as specified in our contrast

6. Regenerate the results file comparing another two people. You can do whichever one
you like, but here I'll use “Ethan” and “Eric”

> res <- results(dds,contrast = c("person","Ethan","Eric"))
> head(res)
log2 fold change (MLE): person Ethan vs Eric
Wald test p-value: person Ethan vs Eric
DataFrame with 6 rows and 6 columns
baseMean log2FoldChange 1fcSE stat pvalue padj
<numeric> <numeric> <numeric> <humeric> <numeric> <numeric>
NR_046018 1.07449047357762 1.20651410025299 1.93256742982961 0.624306340689683 0.532426420584249 ©0.999688681823917
NR_024540 75.0618625564708 0.174444303961561 0.447858085262212 0.38950799304969 0.696900399001311 0.999688681823917

You do not need to re-run DESeq2 to get these other comparisons! Just use the results()
command with a different contrast.
Part 2.1: Numeric contrasts
1. You can equivalently use a “numeric” vector to get the same results. This is usually
easiest to understand when no control sample is indicated. If you don’t want to
designate a control, just specify a “0” as the intercept term.

2. View the model matrix:
> model .matrix(~@+person,data = metadata)

personEli personElizabeth personEric personEthan
1 0 0

SLQOO'\IO'\UW-F-LUNI—‘
(SIS IS SR I T S I S I]
000 R,RFRPREPLPOE®
S0 RrRrRPPRPOOOOO®
[l B S S RS S GS BGOSR I S

N
()
[
S
=

w

Notice that we now are no longer assigning each column an intercept value. We'll
instead be looking at changes relative to a “0” line. In other words, none of these
samples are being used as controls
4. With numeric matrices, we can easily answer unique questions. Such as “Is Ethan
different than the average of Elizabeth and Eli (his parents)?”
5. Run DESeqg2 with the new equation
> dds <- DESeqgDataSetFromMatrix(countData=countdata,colData = metadata,design = ~@+person)
> dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing

6. Generate a results file. Use a regular contrast comparing Ethan and Eric.

> res <- results(dds,contrast = c("person","Ethan","Eric"))
> head(res)
log2 fold change (MLE): person Ethan vs Eric
Wald test p-value: person Ethan vs Eric
DataFrame with 6 rows and 6 columns
baseMean log2FoldChange 1fcSE stat pvalue padj
<humeric> <numeric> <numerics> <numeric> <humeric> <humeric>
NR_046018 1.07449047357762 1.20651472879382 1.93256761931939 0.624306604712096 ©.532426247225463 ©0.99968867941443
NR_024540 75.0618625564708 @.174444336715847 0.447858096441416 0.389508056462401 ©.696900352101449 @.99968867941443

7. Next, look at the model matrix. Use a numeric contrast to generate the same

comparison. You'll notice each of the values in every column are the same.

> res <- results(dds,contrast = ¢(0,0,-1,1))
> head(res)
log2 fold change (MLE): 0,0,-1,+1
Wald test p-value: 0,0,-1,+1
DataFrame with 6 rows and 6 columns
baseMean log2FoldChange 1fcSE stat pvalue padj
<humeric> <numeric> <numeric> <numeric> <humeric> <humeric>
NR_046018 1.07449047357762 1.20651472879382 1.93256761931939 0.624306604712096 ©.532426247225463 ©@.99968867941443
NR_024540 75.0618625564708 @.174444336715847 0.447858096441416 0.389508056462401 ©.696900352101449 @.99968867941443

The values in the numeric contrast refer to the column index of the design matrix (so the first
position in the numeric matrix refers to personEli, the second position is personElizabeth, and
so on). The numeric contrast can be used to pick which columns from your design matrix you
want to compare. You can contrast two effects by making one column negative. In effect, we
are looking at the difference between Ethan and Eric (thus, we “subtract” Ethan and Eric by
using a -1 in the numeric contrast vector for Ethan, and a +1 for Eric)

8. Now, use a partial value to answer the following question- what is the difference

between Ethan and the average of Eli and Elizabeth (the parents)?:

> res <- results(dds,contrast = c(.5,.5,-1,0))
> head(res)
log2 fold change (MLE): +0.5,+0.5,-1,0
Wald test p-value: +0.5,+0.5,-1,0
DataFrame with 6 rows and 6 columns
baseMean log2FoldChange 1fcSE stat pvalue padj
<numeric> <humeric> <numeric> <numeric> <numeric> <humeric>
NR_046018 1.07449047357762 1.38662672064284 1.72919328470719 0.801892265547191 ©.42261528054417 ©.999777384883477
NR_024540 75.0618625564708 0.28971614323549 0.390673543039882 0.741581170255788 0.458341135579838 ©.999777384883477

Here, the .5 means we’re adding half of the effect from Eli, and half of the effect from Elizabeth,
then finding the difference between that value and Ethan. This is the equivalent of taking the
average effect between Eli and Elizabeth.

Alternatively, you could also run the two comparisons separately and find the average log2FC
(i.e., Ethan vs Elizabeth and Ethan vs Eli).

9. Partial values can be used to average datasets or effects, or to make more specific
comparisons between different groups. These can get very complex- be aware of

what your design means

Part 2.2: Contrast list

There’s one more way to generate these comparisons: contrast lists. In this format, the first
vector contains the columns which will be added together, and the last vector contains the
columns which will be subtracted. These columns must be specified exactly as they’re named in
the design matrix.

> res <- results(dds,contrast = list(c("personEthan"),c("personEric")))
> head(res)
log2 fold change (MLE): personEthan vs personEric
Wald test p-value: personEthan vs personEric
DataFrame with 6 rows and 6 columns
baseMean log2FoldChange 1fcSE stat pvalue padj
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
NR_046018 1.07449047357762 1.20651472879382 1.93256761931939 0.624306604712096 0.532426247225463 0.99968867941443
NR_024540 75.0618625564708 0.174444336715847 @.447858096441416 0.389508056462401 @.696900352101449 ©.99968867941443

All of these methods are equivalent, but some might be easier to understand/utilize than
others depending on your type of analysis.

Using a list and specifying the column name also allows you to compare across multiple groups.
This will become useful in the next section.

Part 3: Interaction Coefficients

1. Load in the counts file containing multiple treatments
> countdata <- read.delim("/path/to/your/filess/ploidy_treatment_counts.txt",
o+ sep="\t", header=TRUE)

2. Load in the metadata. Notice we have multiple columns of interest. How can you load in
all of the metadata information into the design matrix?
> metadata <- read.csv("/path/to/your/files/ploidy_treatment.csv",
+ sep=",",header=TRUE)
3. View the model matrix with an interaction term (again, for simplicity, we’ll leave out
batch correction):

> model.matrix(~treatmentIFN+ploidy+treatmentIFN:ploidy,data=metadata)
(Intercept) treatmentIFNIFN ploidyTZ21 treatmentIFNIFN:ploidyTZ21
1 @ 0

R RO NOU A WN R
= o
[e e R R S S e
O rRPOPrROROR R
PR OO RRPROORRLRO
(SRR R S R~ I~)

=
~N
[EnY
=
[EY

4. Which samples are used for the genotype:treatment term? All of the samples that have
both ploidyT21 AND treatmentIFNIFN values of 1. In other words, samples that are both
T21 and IFN-treated.

5. Run DESeqg?2 with the new model:
rownames(countdata) <- countdatal,2]
countdata <- countdatal,-c(1,2,3)]
dds <- DESeqDataSetFromMatrix(countData = countdata, colData = metadata, design=~treatmentIFN+ploidy+treatmentIFN:ploidy)
dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing

>
>
>
>

6. Find the results for the interaction term for the interferon-response gene “NM_016817"

> res[rownames(res)=="NM_016817",]

log2 fold change (MLE): treatmentIFNIFN.ploidyT21

Wald test p-value: treatmentIFNIFN.ploidyT21

DataFrame with 1 row and 6 columns
baseMean log2FoldChange 1fcSE stat pvalue padj
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>

NM_016817 25684.954620474 0.0248278861258059 @.204549587137594 @.12137832431363 0.903391384623132 0.999656960433803

How do we interpret these results? Put short, the interaction term here is the treatment effect
of IFN in T21 minus the treatment effect of IFN in D21. Since our log2FoldChange here is small,
it means that this gene responds similarly to IFN for both T21 and D21.

7. What if we just want the condition effect in T21 (i.e., the effect of IFN in T21, not
accounting for the baseline effect in D21)? We can use a contrast:

> resultsNames(dds)
[1] "Intercept" "treatmentIFN_IFN_vs_control” "ploidy_T21_vs_D21" "treatmentIFNIFN.ploidyT21"
> res <- results(dds,contrast=list(c("treatmentIFNIFN.ploidyT21","treatmentIFN_IFN_vs_control")))
> head(res)
log2 fold change (MLE): treatmentIFNIFN.ploidyT2l+treatmentIFN_IFN_vs_control effect
Wald test p-value: treatmentIFNIFN.ploidyT2l+treatmentIFN_IFN_vs_control effect
DataFrame with 6 rows and 6 columns
baseMean log2FoldChange 1fcSE stat pvalue padj
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
DQ459430 326636.681168512 -0.0599061958275214 ©.180211080500315 -0.332422377476488 0.739570343591367 0.974740612382292
DQ516784 21561.436724912 -0.0148325507686184 ©.437217320979903 -0.0339248928550574 0.972937042982389 0.997595529456313
DQ516752 76762.5774909045 -0.0369141620560472 ©0.163140443516299 -0.226272291900194 0.820989647418344 0.982665571214653
DQ668364 10892.583104162 -0.100404700084239 ©0.168831270382741 -0.594704404324039 0.552041077278195 0.931767198778404
DQ883670 2.78972972874319 -0.851853815345591 1.11239571168187 -0.765783080966437 0.443805382897581 NA
EF011062 17.9221863913968 -0.708636792081533 0.533612088589211 -1.32799988462604 0.184178145029285 0.687137848520213

Remember to check your design matrix column names to make sure they match. Use the
resultsNames() command to check the design matrix within the DESeq2 object itself.

Part 4 (If we make it here): Likelihood Ratio Tests, Time Series, and Heatmaps
Oftentimes we are working with data that isn’t amenable to a simple pairwise comparison.
Instead, we want to group the values together into a single model, and test how well each
element of the model predicts the data.

1. Load in counts file containing a time series

> countdata <- read.delim("/path/to/local/files/timeseries_simple_example_counts.txt",
+ sep="\t", header=TRUE)

2. Load in the time series metadata.

> metadata <- read.csv("/path/to/local/files/timeseries_simple_example_metadata.csv",
+ sep=",",header=TRUE)
3. Run DESeq2, with a likelihood ratio test (LRT). Use a full model with batch and time, and
a reduced model with just batch
Note that we also have to relevel our metadata, because otherwise the times are sorted
alphanumerically by default. This won’t affect the test itself, but rather how we visualize the
data.

> rownames(countdata) <- countdatal,1]

> countdata <- countdatal,-c(1)]

> metadata$time <- factor(metadata$time,levels=c("Om","60Om","120m","180m","24@m","300m"))
> dds <- DESeqgDataSetFromMatrix(countData = countdata, colData = metadata,
+ design=~batch+time)

> dds <- DESeq(dds,test="LRT",reduced=~batch)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

4. Find the results. Notice that we still have a reported log2FC. The p-value is NOT
generated from this value in a LRT.

> res <- results(dds)
> head(res)
log2 fold change (MLE): time 30@m vs Om

LRT p-value: '~ batch + time' vs '~ batch’
DataFrame with 6 rows and 6 columns
baseMean log2FoldChange 1fcSE stat pvalue padj
<numeric> <numeric> <nhumeric> <numeric> <numeric> <numeric>
genel 128.55032705123 ©.150491931513462 ©.638783580331034 0.672661788821202 ©.984435302354209 @.998986440956293
gene? 24.9641618619594 0.128802922262277 ©.976156515917486 2.55687526915447 0.767906238029474 NA
gene3 21.0215737074764 ©@.439832915451598 1.10727665433593 6.07013344947407 0.299454335894977 NA
gene4 5.89794525268679 0.48873489790734 1.52697228424526 1.95435177736707 ©.855424613331512 NA
gene5 0.876067595017242 0.0083942237645078 4.29728287912438 2.74856139065366 0.738681756452033 NA
gene6 12.3549536202008 -3.55465463865471 1.23439654483279 9.05089737232706 0.10705117334082 NA

How do we interpret these results? This is similar to an analysis of variance (ANOVA) test. Here,
we’re asking whether the full model is significantly better at explaining the data than the
reduced model (this is formally known as an analysis of deviance).

Any significant genes were much better explained by ~batch+time than by ~batch alone. In
other words, we need the time information to explain the deviance in the counts we see for
that gene, suggesting that the duration of the treatment is an important element to that gene’s
expression level.

This is NOT the same as a fold change! The deviance in expression levels we see might not
actually be significant if we were to do a pairwise Wald (log2FoldChange) test, but the model
better explains the counts across all the samples. Visualize gene8151 to get a better sense of
this.

> vsd <- vst(dds)
> boxplot(assay(vsd)['gene8151',] ~ metadatal, "time'])

Pop quiz: How could you tell which term is the most important for explaining the data? How
about which terms are least important?

One method would be to compare the stat/p-values of each term when compared to an
“empty” model, which only contains an intercept fit. To do this, use “reduced=~1". For
example:

> dds <- DESeqgDataSetFromMatrix(countData = countdata, colData = metadata,
+ design=~time)
> dds <- DESeq(dds,test="LRT", reduced=~1)

Part 4.1 Heatmaps and Clustering

One common method for visualization of counts data is a heatmap, combined with clustering.
Clustering is a necessary first step before an enrichment analysis (gene ontology, gene set
enrichment analysis, etc.)

We will use the pheatmap package:

> install.packages("pheatmap™)

> library(pheatmap)

First, we need to normalize our counts. This will take several steps

We run DESeq_2, as before, saving our results file. Then, we use an “rlog” transformation. This is
a stabilizing transformation that makes counts more comparable to each other within and
across samples. We then subset our top hits by taking the best 50 genes (lowest padj. This is to
keep processing time down for the workshop- you could easily cluster on many more genes).
Finally, we subset our normalized counts to only include those genes in the top 50.

> dds <- DESeqgDataSetFromMatrix(countData = countdata, colData = metadata,
+ design=~batch+time)

> dds <- DESeq(dds,test="LRT",reduced=~batch)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

> res <- results(dds)

rlogcounts <- rlog(dds,blind=F)

normcounts <- (assay(rlogcounts))

topGenes <- head(resdata[order(resdata$padj),],50)

normcounts <- normcounts[rownames(normcounts) %in% rownames(topGenes),]

Lastly, we re-scale our counts by Z-score for each row (i.e., we set the mean of the row to zero,
and each sample’s value for that gene is set to its Z-score). This makes the visualization
consistent across all genes and samples. (We also have to “transpose” our dataframe, so that
our genes are the column values, for the scale function to work. We transpose it back once
we’re done. Just one example of many “R-isms”).

#Scale by Z-score (mean = @)

heat <- t(scale(t(normcounts)))

Max values to display (all heatmaps lie!)

thr <- 2

heat[heat < -thr] <- -thr

heat[heat > thr] <- thr

pheatmap(heat, breaks=seq(from=-thr, to=thr, length=101),cluster_cols = FALSE)
We've set a threshold value so that outliers don’t blow out the heatmap. We convert all values
beyond this threshold to the threshold value. This threshold value can obscure data, so be
conscientious of this when you make or view heatmaps. All heatmaps lie!

vV V.V V V V V

We’ve also set the number of “breaks” for the color gradient in the heatmap. The more breaks,
the smoother the gradient. Again, your choice of breaks can obscure the data, so be careful. We
also specify to not cluster columns, as we want to preserve the order of the time series data
and replicate information.

g 47 2
gene12856
gene11825

| genel19798 1
| H eneB151
gene1 6783
gene83
genel5388

| | gene14430
gene3146
geneg169
genel17572 1
gened043

gene15999
gene18921

| genel14919 2
gene16513
gene15957

| gened653

| gene6B3z2
genel14725
gene10157
gened.
gene7 162
gened032
gene7905
gene15045
gene11801
gene18847
gene15775
genel1328
genel172
genel10755
gened764
gene15943
gene§533

3ene1 8396
gene12261
genel17879
gene19993
gene1085
genel779
gened3s57
gene248
gene7896
gene624
gene867
gene2515
gene16632

e

i

L wog 1za
L wpzL 1za
L wpgL 1za

Z wog 1za

L wgLza

Z wo 1za

| wo¥z Lza
L wooe Lea
Z wozl Lea
Z wosl Lea
T wovz 1zda
€ wpoe 1eda

Pheatmap has built-in clustering (k-means) which can help with visualization and downstream
analysis. You can specify the k as an argument in pheatmap:

> pheatmap(heat, breaks=seq(from=-thr, to=thr, length=101),cluster_cols = FALSE,
+ kmeans_k = 4)

Cluster: 3 Size: 11

Cluster: 4 Size: 14

Cluster: 1 Size: 14

Cluster: 2 Size: 11

D21_300m_2

D21_240m_2

D21_180m_2

D21_120m_2

D21_60m 2

D21_0m_2

D21_300m_1

D21_240m_1

D21_180m_1

D21_120m_1

D21_60m_1

D21_0m_1

