
Day 8: Advanced DESeq2 Experimental Design (Worksheet) 
By: Samuel Hunter 
 
We will be working through some “advanced” DESeq2 designs. On your first day with DESeq2, 
you learned how to run a pairwise comparison and interpret/visualize your results. But our 
experimental designs are often more complex than just a simple pairwise comparison. How can 
we incorporate more design elements into DESeq2? 
 
Download all files in /scratch/Shares/public/sread2022/data_files/day8 from AWS to your local 
computer. You’ll need to replace all of the paths to these files in the instructions with the local 
path you stored them to. So, for the first step, I would replace 
“/path/to/your/files/batch_example_counts.txt “ with  
“/Users/samuelhunter/sread2022/day8/data_files/batch_example_counts.txt” 
 
Part 1: Batch Effect Correction 

1. Load in the counts file for batch correction, along with our DESeq2 library:  

 
2. Load in the metadata file for batch correction: 

 
3. Organize the counts file into a DESeq2 compatible matrix, and check the metadata file: 

 

 



 
4. View the model matrix. The rows of the model matrix match up with the rows of your 

metadata: 

 
5. For now we aren’t using batch information, only sample treatment information. 

 
6. Run DESeq2: 

 
7. View “NM_016817” in results file. Take note of the Log2FoldChange and LfcSE values 

(This is a strong IFN response gene) 

 
Visualize the results with an MA plot: 

 
And get a summary printout of the results 

 
 

8. Now fetch the normalized counts for each sample, and make a plot of this gene. You’ll 
notice some substantial batch effects 



 

 
9. You can also use a PCA plot to view this on a global scale: 

 
10. We can correct for these effects by including another term in our design matrix. Take a 

look at our new model matrix: 



 
 

11. Notice that we’ve included a new term which additionally accounts for the batch effect. 
Now run DESeq2 again with this new design formula. View “NM_016817” again. 

 
You’ll notice that the same gene now has a smaller lfcSE but a similar Log2FoldChange. This is 
because we’ve explained some of that standard error by the differences in basal levels in each 
batch. But, each batch responded similarly, so the log2FC doesn’t shift much. We can now more 
confidently call this gene as significant (padj is much smaller now) 
 
Batch correction will help with finding significant calls (more likely true positives) while avoiding 
batch-specific significant calls (which are likely false positives). 
 
Visualize the results with an MA plot and summarize results as before: 

 

 
 
Part 2:  Within-group contrasts 

1. Load in the counts file for contrast 



 
 

2. Load in the metadata file: 

 
3. View the metadata and counts file. Notice that we have multiple values under the 

“Person” column.  

 
 

4. Run DESeq2 (We’ll leave batch correction out for now): 

 
 

5. Generate results file using a contrast. Compare “Ethan” and “Elizabeth” and get some 
summary results: 

 

 
Notice in the first lines of the results printout, it says that the log2 fold change and Wald test 
are performed comparing Ethan and Elizabeth, as specified in our contrast 



6. Regenerate the results file comparing another two people. You can do whichever one 
you like, but here I’ll use “Ethan” and “Eric” 

 

 
 
You do not need to re-run DESeq2 to get these other comparisons! Just use the results() 
command with a different contrast. 
Part 2.1: Numeric contrasts 

1. You can equivalently use a “numeric” vector to get the same results. This is usually 
easiest to understand when no control sample is indicated. If you don’t want to 
designate a control, just specify a “0” as the intercept term. 

2. View the model matrix: 

 
3. Notice that we now are no longer assigning each column an intercept value. We’ll 

instead be looking at changes relative to a “0” line. In other words, none of these 
samples are being used as controls 

4. With numeric matrices, we can easily answer unique questions. Such as “Is Ethan 
different than the average of Elizabeth and Eli (his parents)?” 

5. Run DESeq2 with the new equation 

 
6. Generate a results file. Use a regular contrast comparing Ethan and Eric. 



 
7. Next, look at the model matrix. Use a numeric contrast to generate the same 

comparison. You’ll notice each of the values in every column are the same. 

 
The values in the numeric contrast refer to the column index of the design matrix (so  the first 
position in the numeric matrix refers to personEli, the second position is personElizabeth, and 
so on). The numeric contrast can be used to pick which columns from your design matrix you 
want to compare. You can contrast two effects by making one column negative. In effect, we 
are looking at the difference between Ethan and Eric (thus, we “subtract” Ethan and Eric by 
using a -1 in the numeric contrast vector for Ethan, and a +1 for Eric) 
 

8. Now, use a partial value to answer the following question- what is the difference 
between Ethan and the average of Eli and Elizabeth (the parents)?: 

 
 
Here, the .5 means we’re adding half of the effect from Eli, and half of the effect from Elizabeth, 
then finding the difference between that value and Ethan. This is the equivalent of taking the 
average effect between Eli and Elizabeth.  
 
Alternatively, you could also run the two comparisons separately and find the average log2FC 
(i.e., Ethan vs Elizabeth and Ethan vs Eli).  
 

9. Partial values can be used to average datasets or effects, or to make more specific 
comparisons between different groups. These can get very complex- be aware of 
what your design means  

 
Part 2.2:  Contrast list 
 



There’s one more way to generate these comparisons: contrast lists. In this format, the first 
vector contains the columns which will be added together, and the last vector contains the 
columns which will be subtracted. These columns must be specified exactly as they’re named in 
the design matrix.  

 
 

All of these methods are equivalent, but some might be easier to understand/utilize than 
others depending on your type of analysis. 
 
Using a list and specifying the column name also allows you to compare across multiple groups. 
This will become useful in the next section. 
 
Part 3: Interaction Coefficients 

1. Load in the counts file containing multiple treatments 

 
 

2. Load in the metadata. Notice we have multiple columns of interest. How can you load in 
all of the metadata information into the design matrix? 

 
3. View the model matrix with an interaction term (again, for simplicity, we’ll leave out 

batch correction): 

 
4. Which samples are used for the genotype:treatment term?  All of the samples that have 

both ploidyT21 AND treatmentIFNIFN values of 1. In other words, samples that are both 
T21 and IFN-treated. 
 



5. Run DESeq2 with the new model: 

 
 

6. Find the results for the interaction term for the interferon-response gene “NM_016817” 

 
 
How do we interpret these results? Put short, the interaction term here is the treatment effect 
of IFN in T21 minus the treatment effect of IFN in D21. Since our log2FoldChange here is small, 
it means that this gene responds similarly to IFN for both T21 and D21. 

 
7. What if we just want the condition effect in T21 (i.e., the effect of IFN in T21, not 

accounting for the baseline effect in D21)? We can use a contrast: 

 
 
Remember to check your design matrix column names to make sure they match. Use the 
resultsNames() command to check the design matrix within the DESeq2 object itself. 
 
Part 4 (If we make it here): Likelihood Ratio Tests, Time Series, and Heatmaps 
Oftentimes we are working with data that isn’t amenable to a simple pairwise comparison. 
Instead, we want to group the values together into a single model, and test how well each 
element of the model predicts the data. 

1. Load in counts file containing a time series 

 
 

2. Load in the time series metadata.   



 
3. Run DESeq2, with a likelihood ratio test (LRT). Use a full model with batch and time, and 

a reduced model with just batch 
Note that we also have to relevel our metadata, because otherwise the times are sorted 
alphanumerically by default. This won’t affect the test itself, but rather how we visualize the 
data. 

 
4. Find the results. Notice that we still have a reported log2FC. The p-value is NOT 

generated from this value in a LRT. 

 
 
How do we interpret these results? This is similar to an analysis of variance (ANOVA) test. Here, 
we’re asking whether the full model is significantly better at explaining the data than the 
reduced model (this is formally known as an analysis of deviance).  
 
Any significant genes were much better explained  by ~batch+time than by ~batch alone. In 
other words, we need the time information to explain the deviance in the counts we see for 
that gene, suggesting that the duration of the treatment is an important element to that gene’s 
expression level. 
 
This is NOT the same as a fold change! The deviance in expression levels we see might not 
actually be significant if we were to do a pairwise Wald (log2FoldChange) test, but the model 
better explains the counts across all the samples. Visualize gene8151 to get a better sense of 
this. 
 

 



 
 
Pop quiz: How could you tell which term is the most important for explaining the data? How 
about which terms are least important? 
 
One method would be to compare the stat/p-values of each term when compared to an 
“empty” model, which only contains an intercept fit. To do this, use “reduced=~1”.  For 
example: 
 

 
 
Part 4.1 Heatmaps and Clustering 
One common method for visualization of counts data is a heatmap, combined with clustering. 
Clustering is a necessary first step before an enrichment analysis (gene ontology, gene set 
enrichment analysis, etc.) 
 
We will use the pheatmap package: 

 

 
First, we need to normalize our counts. This will take several steps 
 
We run DESeq2, as before, saving our results file. Then, we use an “rlog” transformation. This is 
a stabilizing transformation that makes counts more comparable to each other within and 
across samples. We then subset our top hits by taking the best 50 genes (lowest padj. This is to 
keep processing time down for the workshop- you could easily cluster on many more genes). 
Finally, we subset our normalized counts to only include those genes in the top 50. 

 
 



Lastly, we re-scale our counts by Z-score for each row (i.e., we set the mean of the row to zero, 
and each sample’s value for that gene is set to its Z-score). This makes the visualization 
consistent across all genes and samples. (We also have to “transpose” our dataframe, so that 
our genes are the column values, for the scale function to work. We transpose it back once 
we’re done. Just one example of many “R-isms”). 

 
We’ve set a threshold value so that outliers don’t blow out the heatmap. We convert all values 
beyond this threshold to the threshold value. This threshold value can obscure data, so be 
conscientious of this when you make or view heatmaps. All heatmaps lie! 
 
We’ve also set the number of “breaks” for the color gradient in the heatmap. The more breaks, 
the smoother the gradient. Again, your choice of breaks can obscure the data, so be careful. We 
also specify to not cluster columns, as we want to preserve the order of the time series data 
and replicate information. 

 
Pheatmap has built-in clustering (k-means)  which can help with visualization and downstream 
analysis. You can specify the k as an argument in pheatmap: 

 



 


