

Day 5: TDF visualization & Assessment

2022/07/15 Daniel Ramírez DnA Lab University of Colorado Boulder, BioFrontiers

What you have learned so far on week 1 ...

- Working on a unix-like command terminal.
- Connecting to computer cluster (AWS or BioFrontiers Fiji).
- Processing high throughput sequencing files (FASTQ) to obtain a reference genome aligned/mapped SAM/BAM files.

<u>Today:</u>

Part 1 (1 hour): Visualizing mapped files using TDF instead of BAM. Part 2 (2 hours): Assessment of skills learned until today.

Day 5 - Part 1 (1 hour) Visualizing mapped files using TDF instead of BAM

Comparing BAM and TDF files on IGV

Observed region on screen = **13 kb**

Comparing BAM and TDF files on IGV

Observed region on screen = 214 kb

IGV does not display individually mapped reads on such a big region at once!

But IGV does okay displaying TDF coverage across any zoom region.

Obtaining "per million" scaling factor to normalize

chr21Eric repA.RNA.bam.flagstat

BAM file had a **63,118** paired-reads mapped flagged as secondary alignments.

BAM file had a total of **654,519** paired-reads mapped.

> Total primary paired-reads 654.519 - 63.118 = **591.401**

"Per million" factor is then 591,401 / 1,000,000 = **0.591401**

Normalize read coverage by sequencing depth

4th column in BedGraph file contains the read density information for the interval denoted in columns 1st, 2nd, and 3rd

chr21Eric_repA.RNA.BedGraph

chr1	257745	257845	- 1
chr1	257881	257883	1
chr1	257883	257941	5
chr1	257941	257981	7
chr1	257942	257954	-1
chr1	257954	258042	- 3
chr1	257981	257983	6
chr1	257983	258041	2
chr1	258042	258053	-2
chr1	259513	259613	-2

chr21Eric_repA.RNA.mp.BedGraph

chr1	257745	257845	-1.69090008302
chr1	257881	257883	1.69090008302
chr1	257883	257941	8.45450041512
chr1	257941	257981	11.8363005812
chr1	257942	257954	-1.69090008302
chr1	257954	258042	-5.07270024907
chr1	257981	257983	10.1454004981
chr1	257983	258041	3.38180016605
chr1	258042	258053	-3.38180016605
chr1	259513	259613	-3.38180016605

+ by "per million" factor (0.591401)

Divide each row entry by the "per million" scaling factor to normalize BedGraph to account for total number of mapped reads (or library depth) Normalize read coverage by sequencing depth

What does this script do? d5-bam-to-tdf-pairedend.sbatch

Comparing TDFs: not scaled vs scaled datasets

MDM2 locus

TDF

"per million mapped" scaling factor DMSO dataset = 50.7 Nutlin dataset = 59.2

Day 5 - Part 2 (2 hours) Assessment of skills learned from Day 2 to Day 5

What have you learned this week?

Let's work on the next 2 hours (10 am - 12 pm) on processing new high-throughput sequencing datasets.

Check out available FASTQ datasets on Day5 files. (Extra-very-real-points: Do all files with a loop!)

START FASTQ ⇒ SAM ⇒ BAM ⇒ BEDGRAPH ⇒ scaled BEDGRAPH ⇒ TDF