### Log in

Open terminal on a mac or a bash system on the pc like ubuntu Type\$ hostname And the computer will tell you your computer's name.

Type\$ ssh <username>@<computername>

Are you sure you want to continue. Type\$ yes

The first time you log in it will ask you:

Logging on to a cluster

Super computers will either use a ssh key or will ask you for a password. If you type a password, you will see nothing. That's normal! It's a feature not a bug.

To confirm you are on the super computer Type\$ hostname And the computer will tell you the super computer's name.

Log out

Type\$ logout

### Library prep and QC

## Anatomy of a library



### **Creating libraries**



# Library kits



- Your protocol will determine whether you use a kit
  - Whole genome/RNA sequencing mostly use kits
  - ChIP-seq, ATAC-seq, more specialized protocols do many steps outside of kits
- Kit considerations:
  - How much input do you have? (> μg, < 10 ng, single-cell)</li>
  - What quality input do you have?
  - Do you need to worry about fragmentation or amplification biases?
  - RNA: do you want total, poly-A, micro, or ribosomal-depleted RNA?
  - RNA: do you want a strand-specific library? (Yes)

### Library multiplexing



www.illumina.com/content/dam/illumina-marketing/documents/products/illumina\_sequencing\_introduction.pdf

# Choosing indeces

- Single indexing
- Combinatorial dual indexing
- Unique dual indexing
- Unique molecular identifiers
- Considerations:
  - Base diversity
  - Index hopping
  - Ease of deconvolution

## Library quality control



## Pre-sequencing QC

- Size electrophoresis (Bioanalyzer)
- Fluorimeter (Qubit)
- qPCR for P5/P7
- Rarely see the same conc. among the three methods
- qPCR:Qubit molar ratios for wellperforming libraries are 0.8-2.0



It is better to make a new library than to sequence a terrible library!

## Library quality control



#### Per base sequence content

### FastQC

Base diversity

Complexity



#### Per base sequence content



**Base diversity** 

Complexity

#### Per base sequence content

### FastQC

Base diversity

Complexity



#### **Sequence Duplication Levels**



Complexity Duplication

#### **Sequence Duplication Levels**



Complexity Duplication



**Adapter Content** 

Adapter Contamination





### Break!

## VIM and vimtutor

- What is VIM?
  - Text editor read, write and save text files
  - Entirely keyboard-based
  - You cannot use your mouse to move the cursor!
- vimtutor is on every linux system and teaches you how to use vim – open it now

### Illumina sequencing

### Sequencing technologies

Short read sequencing

(37 to 250 bases)

Illumina

Long read sequencing (10 to >50 kb)

**Pacific Biosciences SMRT** 

Roche 454

**Oxford Nanopore** 

Applied Biosystems SOLiD

Complete genomics Nanoball

Thermo Fisher Ion Torrent

### Illumina sequencing technology

Imaging a slide (flow cell) with millions/billions of DNA clusters by cycling in fluorescent nucleotides

https://www.youtube.com/watch?v=fCd6B5HRaZ8

### Illumina sequencing platforms









HiSeq 4000 System



iSeq 100 System

stem MiSeq Series O

NextSeq Series O

NovaSeq 6000 System

#### \$/base

#### **Read output**

|              | iSeq 100  | MiSeq         | NextSeq       | HiSeq 4000 | NovaSeq   |
|--------------|-----------|---------------|---------------|------------|-----------|
| Run time     | 9-17.5 hr | 9-55hr        | 12-30hr       | 1-3.5 days | 13-44hrs  |
| Throughput   | 1.2Gb     | 7.5-15Gb      | 120Gb         | 1500Gb     | 6000Gb    |
| Read output  | 4M        | 12-25M        | 130-400M      | 6B         | 20B       |
| Color system | 1 channel | 4 channel     | 2 channel     | 4 channel  | 2 channel |
| Flowcell     | Patterned | Non-Patterned | Non-Patterned | Patterned  | Patterned |



## Read depth and expected outcomes

**RNA-seq DEA** 

- Low-abundance RNA
- Isoform analysis

Min. depth (in mammals)

 $20 \times 10^6$  reads/sample 50 x 10<sup>6</sup> reads/sample 50 x 10<sup>6</sup> reads/sample

### Other specs

SE/PE, insert size 100s SE/PE, insert size 100s PE, longer reads, insert size 100s

- Whole genome seq
  - Heterozygous SNPs
  - Indels
- ChIP-seq
  - Broad peaks
- microRNA

15x coverage/sample 30x coverage/sample 60x coverage/sample

12 x 10<sup>6</sup> reads/sample 30 x 10<sup>6</sup> reads/sample

SE/PE, insert size 100s SE/PE, insert size 100s PE, insert size 100s

SE, insert size 100s SE, insert size 100s

5-10 x 10<sup>6</sup> reads/sample

SE, short reads, small insert size

https://genohub.com/recommended-sequencing-coverage-by-application/

### Questions?