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An Annotation Agnostic Algorithm for Detecting
Nascent RNA Transcripts in GRO-Seq

Joseph G. Azofeifa, Mary A. Allen, Manuel E. Lladser, and Robin D. Dowell

Abstract—We present a fast and simple algorithm to detect nascent RNA transcription in global nuclear run-on sequencing (GRO-
seq). GRO-seq is a relatively new protocol that captures nascent transcripts from actively engaged polymerase, providing a direct read-
out on bona fide transcription. Most traditional assays, such as RNA-seq, measure steady state RNA levels which are affected by
transcription, post-transcriptional processing, and RNA stability. GRO-seq data, however, presents unique analysis challenges that are
only beginning to be addressed. Here, we describe a new algorithm, Fast Read Stitcher (FStitch), that takes advantage of two popular
machine-learning techniques, hidden Markov models and logistic regression, to classify which regions of the genome are transcribed.
Given a small user-defined training set, our algorithm is accurate, robust to varying read depth, annotation agnostic, and fast. Analysis
of GRO-seq data without a priori need for annotation uncovers surprising new insights into several aspects of the transcription process.

Index Terms—GRO-seq, nascent transcription, logisitic regression, hidden Markov models, algorithms, experimentation

1 INTRODUCTION

ALMOST all cellular stimulation triggers global transcrip-
tional changes. To date, most studies of transcription
have employed RNA-seq or microarrays, powerful meas-
ures of steady state RNA levels. Unfortunately, steady state
levels can be influenced by not only transcription but also
RNA stability, so these assays are not true measures of
transcription. Only recently have methods for direct mea-
surement of transcription, genome-wide, become available.
A technique, known as global run-on sequencing (GRO-
seq), simultaneously detects the amount and direction of
actively engaged RNA polymerases at every position within
the genome [1]. GRO-seq has already drastically influenced
our understanding of the transcription process, as most of
the genome is transcribed but rapidly degraded [2], [3], [4].
The earliest and most common approach to GRO-seq
analysis is annotation centric [1], [5], [6], [7]. Yet much of
transcription does not overlap protein coding annotations
and appears to be noncoding [8]. In particular, one class of
nascent noncoding transcripts originate from enhancers, or
regulatory regions within the genome. While the ENCODE
project made major inroads on identifying these critical reg-
ulatory regions [8], their precise boundaries are still difficult
to ascertain, so they remain largely unannotated. The tran-
scripts that originate from these enhancers, known as

o |.G. Azofeifa is with the Department of Computer Science, University of
Colorado, Boulder, CO 80309. E-mail: joseph.azofeifa@colorado.edu.

o M.A. Allen is with the BioFrontiers Institute, University of Colorado,
Boulder, CO 80309. E-mail: mary.a.allen@colorado.edu.

o M.E. Lladser is with the Department of Applied Mathematics, University
of Colorado, Boulder, CO 80309. E-mail: manuel.lladser@colorado.edu.

e R.D. Dowell is with the Department of Molecular, Cellular, and Develop-
mental Biology and the BioFrontiers Institute, University of Colorado,
Boulder, CO 80309. E-mail: robin.dowell@colorado.edu.

Manuscript received 22 Dec. 2014; revised 15 Dec. 2015; accepted 6 Jan. 2016.
Date of publication 26 Jan. 2016; date of current version 5 Oct. 2017.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TCBB.2016.2520919

eRNAs, are unstable and lowly expressed but do appear to
be critical to their regulatory activity [9], [10], [11], [12], [13].
They are detectable in GRO-seq and tend to show bidirec-
tional transcription [14]. Therefore, the unbiased identifica-
tion of all regions of transcription from GRO-seq is an
important and pressing problem.

To the best of our knowledge only two efforts have
attempted to identify regions of active transcription directly
from GRO-seq data [15], [16], [17], though neither is fully inde-
pendent of annotation. The first used a two state Hidden Mar-
kov Model (HMM) by Hah et al. that was parametrized based
on available annotations [16]. This approach has the advan-
tage of calling large contiguous regions as transcribed, but
fails to call many unannotated regions because their length
and transcription levels do not mimic well annotated regions.
Furthermore, the approach is limited in its ability to discover
transcripts that conflict with the annotation. A more recent
approach, called Vespucci, uses a sliding-window (specified
by two user-dependent parameters) that merges adjacent win-
dows together based on read depth, but requires the user to
tune the algorithm with each new dataset [15]. The window-
ing scheme, in principle, has the benefit of not depending on
annotation. In practice, however, because regions of transcrip-
tion are often broken into discontiguous sections, Vespucci
requires the use of annotations to improve its strategy [15].

Our approach combines the strengths of these previous
efforts [15], [16]. In particular, we propose a fast and robust
method that takes advantage of a logistic regression classifier
embedded within a hidden Markov model as a means of
learning non-linear decision boundaries that classify regions
of active nascent transcription. This approach shares a similar
structure with Maximum Entropy Markov Models [18]. Our
methodology is annotation agnostic, requiring only a small
number of training examples to adapt parameters to new
data. It effectively identifies cohesive regions of active tran-
scription while maintaining a rapid runtime. Furthermore,
the identification of transcripts solely from the signal within
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Fig. 1. A schematic showing how contig length and coverage statistics
discriminate active from inactive nascent transcription. Regions of active
transcription contain many long contigs (positive length, not drawn to
scale) with significant read coverage (labeled in blue) interspersed with
short regions of no coverage. Coverage statistics define mean, median,
mode, and variance of reads (black bars) across a contig, see Table S1,
available in the online supplemental material. In segments with no reads,
a gap (labeled in green) is defined by a negative length value and all cov-
erage statistics are set to zero. For our algorithm, reads (gray bars) are
represented by only their 5’ position (black points). Therefore, a contig is
also a continuous region where every base has at least one read’s 5
end at that position. Consequently, small gaps between contigs have a
high probability of being in an active call.

the data uncovers distinct biological phenomena previously
missed in GRO-seq analysis. Finally, user-friendliness was a
large consideration in the design and structure of the soft-
ware. This paper is an extended version of our earlier confer-
ence paper [19]. Here we extend upon our previous work by
describing a method to compare two datasets based on the
transcribed regions called by our algorithm. Using this differ-
ential transcription method, we re-analyze our earlier [20]
GRO-seq dataset at both previously unannotated transcripts
and annotated genes, demonstrating many of the earlier calls
were annotation based artifacts. Shockingly, we demonstrate
that the major response to activating p53, is increased tran-
scription of p53’s own binding site.

2 MATERIALS AND METHODS

2.1 Algorithm Description
The GRO-seq technique measures nascent transcripts pro-
duced from actively engaged RNA polymerases [1]. Because
splicing has not yet occurred, each transcript covers a contig-
uous region of the underlying genome, reflecting the extent
of polymerase activity. Sequencing reads obtained from the
GRO-seq protocol represent a sample from the underlying
transcripts in proportion to their relative abundances. Ide-
ally, overlapping reads could be merged into contigs, or
regions of continuous read coverage, defining regions of
active transcription. However, because of uneven sampling,
coverage within active regions may not be contiguous. Fur-
thermore, the sequencing and mapping process is noisy,
therefore reads can also spuriously map to inactive regions.
Transcription can be modeled as a discrete time-series
indexed by genomic coordinates where transcriptional activ-
ity observed at adjacent base-pairs is correlated. Similar to
prior models of GRO-seq [16], we model this process as an
ergodic first-order Markov chain where transcription oscil-
lates between active and inactive states. Unlike previous mod-
els, which classify individual nucleotides, our model emits
from each state a contig representative of an active or inactive
region (Fig. 1). Each contig can be described by two feature
classes: contig length (maximum length of overlapping reads)
and contig coverage statistics (Table S1, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2016.2520919).
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Active states, in general, contain a combination of long
regions with high signal interspersed with short regions of
relatively no signal. Hence our HMM framework allows for
the classification of a continuous active region, containing one
or more contigs, despite the variability in coverage of individ-
ual nucleotides that is inherent in short read sequencing data.

We must learn the emission and transition probabilities of
each state from a training set. In our case, this set corresponds
to manually labeled regions of active and inactive transcrip-
tion. Given a training set, we learn the conditional probabili-
ties of a state classification from the set of implicit feature
vectors using logistic regression. Alternative approaches to
feature vector modeling, like neural networks, were consid-
ered. However, we chose to use logistic regression for three
reasons: it requires little training data for parameter estima-
tion, it quickly converges, and it readily scales with genome
size. The logistic regression predictors are interpretable as
probabilities, and therefore easily embedded into a HMM as
emissions. After the probability transitions of the underlying
Markov chain have been estimated, the well-known decoding
algorithms such as Viterbi and Forward/Backward can be
used to infer the most probable state sequence [18].

2.2 Datasets
This study takes advantage of three previously published
GRO-seq datasets (labeled here by the underlying cell line):
MCF-7 [16], IMR90 [1] and our own HCT116 (DMSO and Nut-
lin, wild type p53) [20], as well as three published ChIP-Pol II
datasets: HCT116 [21], IMR90 [22] and MCF7 [23]. For each
experiment, raw reads were mapped to the hgl9 genome
using Bowtie2 with the command bowtie -S -t -v 2 -best [24].
A 5 bedgraph is then generated using BedTools’s (2.16.2)
genomeCoverageBed (options: -5 -bg -strand) for each strand.
Additionally, the ENCODE project provided H3K27ac,
H3K4mel, and DNase I hypersensitivity peak calls for IMR90
[14], [25], MCF7 [26], [27] and HCT116 [26], [28], as well as
ChIA-PET peak calls for HCT116 [29]. Finally, to create a list
of high confidence p53 binding sites, we combined the data
from seven ChIP assays for p53 [30], [31], [32], [33] and kept
only sites that were found in at least three of the seven assays.
Because most nascent transcription is unstable and there-
fore understudied [4], we hand annotated the entire length of
chromosome 1 in our earlier HCT116 GRO-seq DMSO dataset
[20] to perform k-fold cross validation. Other training datasets
were considered, such as using ChromHMM or Segway calls,
but we sought to capture the nuances of nascent transcription
rather than the features of earlier steady state algorithms. For
all testing, 95 percent of the labeled dataset was removed
from training and used to assess model accuracy. To be clear,
the entire labeled HCT116 training set contains 17,776 regions
labeled as active. Based on our cross validation results,
seven regions considered active and seven regions considered
inactive were used for parameter estimation in both the IMR90
and MCF7 GRO-seq datasets. These training sets (with geno-
mic coordinates and labels) are provided in Supplemental
Table S3, available in the online supplemental material.

2.3 Parameter Estimation

The Markov model transition probabilities and the condi-
tional state emission probabilities of our HMM are estimated
via a user defined, labeled training set. Given that read
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Fig. 2. Read coverage features are not linearly separable. Points colored
green represent training examples labeled active and those colored red
indicate training examples labeled inactive. The blue shading provides a
contour plot of the active state probability given the feature’s average
read coverage (x3, y-axis) and the gap length between adjacent contigs
(z1, x-axis in log nucleotides). (A) uses logistic regression with a linear
kernel function (i.e., d = 1 in Equation (3)), whereas (B) uses a second-
order polynomial kernel function (i.e., d = 2 in Equation (3)).

mapping can be noisy and nascent transcripts can be present
at very low levels, estimating parameters that discriminate
active from inactive transcription regions poses a difficult
problem. However, we show in Section 3.1 that surprisingly
little training data is needed to retain high model accuracy,
which we define as the fraction of base pairs where the user-
label and classification-label agree.

Here we outline our logistic regression parameter estima-
tion method, for a detailed exposition see Ohno-Machado’s
review [34]. We estimate the conditional probability p(k| %),
where ke&{inactive, active} and 7 indicates a feature vector,
via a labeled training set of defined genomic coordinates
representing active and inactive transcription regions. Table
51, available in the online supplemental material, provides
a complete description of the feature vector Z. Clearly,
p(inactive|Z) = 1 — p(active|Z). We represent the later prob-
ability in terms of the sum of the coordinates of Z, weighted
by some parameter vector 6. To treat this linear function as
a probability, we bound the sum to the range [0,1] via the
sigmoidal transformation as follows:

1
p(active | T) = T (1)
where
n
(&,6) =600+ > mi-0;, 2)

1=1

(n + 1) is the dimension of the feature vector Z, and 6 is a
bias term.

A simple plot of two features, gap length (z;) and aver-
age read coverage (x3), shows that these features may not
be linearly separable (Fig. 2A). Because of this, we employ a
polynomial kernel (Equation (3)) to learn non linear deci-
sion boundaries (Fig. 2B),

—,

£(Z,8) = (7,6)" +c. 3)

The polynomial kernel function parameters (c and d) can be
set by the user in the FStitch software package. The kernel
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function is incorporated into the sigmoidal transformation
as follows:

L 1
plactive | T) = T 4)
To maximize training and classification accuracy, the algo-
rithm adjusts to the behavior of the feature space. The use of a
simple second-order polynomial kernel (d = 2 and ¢ = 0)
increases the training accuracy by ~10 percent in the HCT116
GRO-seq dataset (Fig. 5). Importantly, this ~10 percent
increase reflects mostly lower expressed labeled transcripts
suggesting that the use of the polynomial kernel allows for
greater sensitivity to under-represented, lowly transcribed
regions.
To estimate the parameter vector § we maximize the log-
likelihood function of the training set D:

1(6,D) = logp(ki | &)- ®)
=1

Here D can be thought of asa N x (n + 1) matrix where N is
the number of training examples and (n + 1) is the dimen-
sion of our feature vector Z. The ith training label, k;, is
either active or inactive.

We use the Newton-Raphson algorithm [35] to itera-
tively update 6 until convergence. Because this techniques
utilizes a second-order Taylor series approximation of the
log-likelihood function, convergence is usually fast. The
update rule is:

§'1 =" — (HL(@, D))" - VL@, D), ©

where V and H represent the gradient and Hessian operators
with respect to the vector 6, respectively. Finally, the most
probable state sequence is estimated via the Viterbi Algo-
rithm [36], using the Maximum Entropy Markov model
framework [18], and is given by the recurrence relation:

(k) = max(vr-1(9) - aj-) - (k| 20, @
where a;_,;, represents the transition probability from state j
to state k& of the hidden Markov chain, which is estimated
via Baum-Welch [18], S is the hidden transcriptional state
space ie. S = {active,inactive}, and p(k|z;) is given in
Equation (3) with 6 learned from the training data using the
Newton-Raphson algorithm. Here 7} is either a gap or con-
tig representation given in Table S1, available in the online
supplemental material.

Using training data to learn parameters allows users to
intuitively provide regions of transcriptional characteriza-
tion thereby doing away with arbitrary parameter values
and grid parameter search for optimization. These parame-
ters are learned from the data and thus adapt accordingly.

2.4 Detecting Enhancers as Divergent Transcription
Recent work indicates that enhancers are often transcribed,
producing unstable bidirectional transcripts that are detect-
able by GRO-seq [10], [14]. Only one analysis approach has,
thus far, tried to leverage this bidirectional signal towards
the de novo discovery of enhancers from GRO-seq signal [14].
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Fig. 3. FStitch output at BRPF3. An IGV snapshot showing a sub-region
in chromosome 6 around BRPF3. The first track shows typical GRO-seq
data from the HCT116 dataset, with the positive and negative strand in
blue and red, respectively. RefSeq annotations are shown next. FStitch
output is below for each strand with green indicating areas of inactive
transcriptional activity, blue representing areas of active transcription on
the positive strand and red on the negative strand. The scores associ-
ated with each classification via the Logistic Regression and Viterbi-pro-
vided Markov state sequence are also displayed. Finally, bidirectional
predictions are provided at the bottom with a score via the estimated
Normal Distribution confidence interval.

In that work, a Naive Bayes classifier was trained on anno-
tated regions in order to label unannotated 2kb windows
either as bidirectional, single stranded transcription, or non-
transcribed [14].

Therefore, we asked whether our FStitch approach could
be extended to detect enhancer RNAs (eRNAs). Conceptu-
ally, our algorithm could simply ask for overlapping active
calls between the positive and negative strand as potential
eRNAs, similarly to the Naive Bayes approach [14]. Unfor-
tunately, it is unclear whether the transcripts on each strand
overlap for all eRNAs as opposed to just being relatively
close in proximity. Moreover, many genes have long non-
coding RNA transcripts anti-sense to the gene, indicating
that a simple overlap is not a stringent enough criterion for
eRNA prediction. Furthermore, we expect to also detect the
5'-end of many genes because bidirectional transcription is
also often observed at gene start sites [37].

Therefore, we sought to determine the extent to which
two transcripts must overlap or be adjacent in order to accu-
rately annotate eRNAs. Using our chromosome 1 manually
annotated dataset, we examined the overlap of these regions
to both a DNase I hypersensitivity site (DHS) and a H3K27ac
mark, both well known indicators of enhancer activity [27],
[38]. We then computed the distance to the nearest anti-sense
FStitch call. We note that the displacement data show a Nor-
mal distribution (Figure S1, available in the online supple-
mental material). Therefore, we make a bidirectional call
when two transcripts, one on each strand, are within some
number of standard deviations of the fitted Normal distribu-
tion. The confidence level of bidirectional predictions is
therefore subjectively defined by the user. In our subsequent
analysis, bidirectional calls utilizes a confidence interval of
two standard deviations, i.e. —1.5 kb to 2.25 kb (Figure S1,
available in the online supplemental material).

2.5 Algorithm Input and Output

The purpose of FStitch is to segment the genome into regions
of active and inactive nascent transcription. The algorithm
accepts as input a 5" BedGraph file (each read counted only
atits 5’ end) of read coverage and a training set file consisting
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of a few segments (at least three segments) labeled as active or
inactive regions of nascent transcription. The training file
requires only start and stop coordinates of regions consid-
ered active and inactive yet, within these regions, the data
should be rich in feature vectors (i.e. contig lengths and cov-
erage statistics). As defaults, FStitch has pre-labeled active
and inactive segments for a human genome based on house-
keeping genes and gene desert regions, respectively. How-
ever, care must be taken with defaults as the transcriptional
landscape varies from experiment to experiment and data-
sets need not be human or mapped to hg19.

FStitch outputs two bed files for positive and negative
strand classifications, respectively, that can be imported
into typical genome browsers such as IGV or the UCSC
genome browser, to view the classifications in conjunction
with read coverage files [39]. Fig. 3 shows a typical output
of the algorithm. These bed files contain the genomic start
and stop of each classification and an associated probabilis-
tic score from the Viterbi algorithm (Equation (7)). From
start to finish, FStitch takes ~3.5 minutes to predict tran-
script annotations in the most deeply sequenced GRO-seq
dataset, HCT116 (152.4 million mapped reads) [20].

2.6 Differential Transcription

One of the primary goals of many GRO-seq experiments is
the identification of differentially transcribed regions
between two or more conditions. As we seek to compare
FStitch based differential transcription to our earlier annota-
tion based analysis of the HCT116 dataset, we first briefly
describe the experiment and its earlier analysis (see [20] for
complete details). Allen et al. treated HCT116 cells with a
small molecule activator of p53 known as Nutlin (or DMSO,
a control) for one hour, then examined the transcriptional
response by GRO-seq. Because genes are known to have a 5’
peak of read coverage that corresponds to polymerase initia-
tion [1], [37], Allen et al. focused on differential transcription
over the gene body, defined by hgl9 RefSeq (downloaded
Oct. 2012) annotations [40] minus the first 1 kilobase (kb).
Differential transcription was determined using DESeq (v
1.4.1) [41] which runs in R (v 2.13.0) with the settings: cds <
estimateSizeFactors(cds), method = ‘blind’, sharingMode =
‘fit-only’. Genes were called as differentially transcribed if
they had an adjusted p-value less than or equal to 0.1.

When using annotation, the regions of interest (typically
genes) are defined a priori. Numerous methods exist for
assessing the statistical significance of changes in the read
depth for a given region of the genome [41], [42]. These
methods are applied routinely to most short read sequenc-
ing datasets, including RNA-seq (steady state RNA meas-
urements) and ChIP-seq. Yet, with FStitch we allow the
GRO-seq data to define the regions of transcription. Given
that the two experiments we wish to compare may not have
precisely the same regions transcribed, the first task is to
determine the coordinates of regions of interest. Intuitively
we can identify three distinct means of identifying regions
of interest: (1) make active calls in one experiment and proj-
ect these coordinates to the second experiment; (2) combine
the raw read data for the two experiments, make active calls
on this joint dataset, and use the coordinates of the resulting
region; or (3) make active calls in both experiments indepen-
dently and then merge the active calls based on genomic
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Fig. 4. Examination of the impact of distinct approaches to identify
regions of interest. MA-plots were generated by DESeq for each of three
distinct methods of determining differential transcription using FStitch
active calls. The projection method has two variations, one starts with
(A) the DMSO active calls and the other with (B) Nutlin active calls. The
other methods are (C) joint and (D) the merge method. See text for
details on each method.

coordinates. We refer to these options as projection, joint, or
merged, respectively.

We first sought to compare the projection, joint, and
merge methods of identifying regions of interest from
FStitch active calls. For the projection method we consider
both experiments as the basis for active calls, using only
DMSO (or Nutlin) to define the regions of interest. For the
joint method, we first sub-sampled the reads from the Nut-
lin experiment to match the depth of the DMSO experiment
using samtools view (0.1.19). The Nutlin subsampled file
was then combined with the DMSO reads using samtools
for analysis by FStitch. Finally, for the merged method,
FStitch was ran independently on the DMSO and Nutlin
samples and active calls were combined keeping all regions
called distinctly in either experiment (logical or; see Figure
S2, available in the online supplemental material). Because
the precise ends of an active call can be influenced by the
read depth of the experiment, we then merged all regions
smaller than 100 bp (See Figure S3, available in the online
supplemental material) with an adjacent segment, unless
both adjacent segments were large, meaning >100 bp, so as
to minimizes concatenating nearby transcribed segments.

Using the same DESeq settings as Allen et al., an exami-
nation of the DESeq generated MA-plots reveals many
interesting properties of each approach (Fig. 4). The projec-
tion method does not utilize all of the data to determine
regions of interest which results in a bias, especially when
one experiment has many more transcribed regions than
the other. It is also directional and asymmetric, depending
heavily on which experiment is used to define regions of
interest (Figs. 4A and 4B). The joint method requires proper
normalization between experiments so as to not bias the
results towards the experiment with greater depth. Addi-
tionally, it forces both experiments to a common coordinate
system which is problematic when the length of an active
call changes between the experiments (Fig. 4C). Yet, a
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comparison of how the active calls shift in size between
DMSO and Nutlin implies many regions change substan-
tially (See Figure S3, available in the online supplemental
material). The merged method requires a systematic means
of handling arbitrarily complex overlap configurations, but
has the potential to identify subregions of differential tran-
scription. For these reasons, all subsequent analysis utilized
the merge method of identifying regions of interest (Fig. 4D).

2.7 Software Availability

FStitch is written in the C/C++ programming language and
complied using GNU compilers later than GCC 4.2.1. The
user interface is command line, resembling many popular
bioinformatics pipelines. FStitch is stand-alone and borrows
from no third-party platforms, libraries or packages. The
open-source software and a comprehensive manual is freely
downloadable at http:/ /dowell.colorado.edu.

3 RESULTS

We present a fast and simple algorithm to detect nascent
RNA transcription in GRO-seq that is annotation agnostic
and robust to low read depth. This section is loosely divided
into four categories: (1) algorithm performances and bench-
marking, (2) comparison to RefSeq annotation and previous
methodologies, (3) validation of bidirectional predictions as
enhancer RNAs, and (4) assessment of differential transcrip-
tion given FStitch output.

3.1 Sensitivity to Depth of Data

To assess the sensitivity of the algorithm to the amount of
training data, we hand curated the entire length of chromo-
some 1 in the HCT116 dataset, labeling regions as active or
inactive. Our manual annotation identifies approximately
17,000 active and inactive regions, effectively labeling
roughly 36 percent of chromosome 1 as active. We tested
FStitch over this rich labeled data using K-fold cross valida-
tion, reserving 5 percent of the training data for parameter
estimation and leveraging 95 percent for testing accuracy.

To assess the amount of training data needed for accurate
classification of active regions, we incrementally decreased
the amount of training data. Fig. 5A shows that FStitch
training is robust to successive decreases in the amount of
training data utilized, suggesting that very little training
data is needed to achieve relatively high accuracy. The
smallest training set (0.1 percent of the initial dataset) con-
sists of three active and two inactive regions and maintains
scores of 95 percent true positive and 4.3 percent false nega-
tive on the testing dataset. Furthermore, we observe that
the polynomial kernel consistently outperforms the linear
kernel.

Similarly, we assessed the sensitivity of FStitch to experi-
mental sequencing depth. To this end, we randomly sub-
sampled (without replacement) from the HCT116 test
dataset, the single experiment with the deepest read cover-
age. For each subsample, we re-estimated the parameters
via a fixed training set, 5 percent of chromosome 1 labels.
Subsequently, we reclassified active transcript segments and
calculated the training accuracy relative to the test set.
Fig. 5B shows that our method is robust to low sequencing
depth of the dataset.



AZOFEIFA ET AL.: AN ANNOTATION AGNOSTIC ALGORITHM FOR DETECTING NASCENT RNA TRANSCRIPTS IN GRO-SEQ

=

-
b O

test set accuracy

© o
o i

—0.2

test set accuracy

: MCF7 Cell Line
0.0 AL

0 20 40 60 80 100
percent randomly held out

Fig. 5. FStitch requires little training data and is robust to low levels of
GRO-seq read coverage. (A) Classification accuracy utilizing succes-
sively decreasing amounts of training data to learn feature vector
weights, for the polynomial (d =2 and ¢ = 0; blue and teal) and linear
(d =1 and ¢ = 0; green and red) kernel. (B) Classification accuracy with
successively less sequencing depth (dataset size). In this case, we
trained on 5 percent of all available chromosome 1 labels and tested on
50 different subsamples of the curated dataset. TP = true positive rate
and FN = false negative rate.

3.2 Benchmarking FStitch and Vespucci

We sought to evaluate our algorithm, FStitch, to the previ-
ously published windowing method Vespucci [15]. We cal-
culated model accuracy for Vespucci with the default
parameters over the HCT116 test dataset (Table 1). In addi-
tion, we performed a grid search on a subset of ranges for
both Max_Edge and Density_Multiplier combinations and
reported the performance of the best parameters obtained
for this dataset. Grid search optimization greatly increased
Vespucci’s precision and recall. FStitch outperforms Ves-
pucci, default or grid search, in both true negative and true
positive classifications.

We next assessed the quality of FStitch active calls to
independently derived relevant biological datasets. As
GRO-seq measures all actively engaged polymerase, in a
strand specific fashion, there is no single alternative experi-
ment to confirm GRO-seq data. However, RNA polymer-
ase II is responsible for most transcribed regions and
therefore comparison to Pol II chromatin immunoprecipita-
tion (ChIP) should independently verify the location of
most transcripts. To this end, we obtained previously pub-
lished Pol II ChIP-seq data for MCF7, HCT116, and IMR90

TABLE 1
Benchmarking FStitch and Vespucci
Method Prediction Truth Set Label
Active Inactive

FStitch Active 98.5 percent 1.5 percent

Inactive 0.01 percent  99.99 percent
Vespucci (default) Active 60.7 percent  30.3 percent

Inactive 6.03 percent  93.97 percent
Vespucci (G.S.) Active 80.1 percent  19.9 percent

Inactive 0.56 percent  99.44 percent

Each algorithm, FStitch and Vespucci with default parameters (Max_Edge:
500 and Density_Multiplier: 10,000), and Vespucci with best parameters from
a grid search, G.S. (Max_Edge: 10 and Density_Multiplier: 2,000), are com-
pared on the manually annotated test set from chromosome 1. Overlap percen-
tages are reported per base.
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Fig. 6. Correlation of GRO-seq transcript calls with Pol Il ChlP-seq. Pol II
ChlP-seq read density was collected in regions labeled as bidirectional
(blue), active (green) or inactive (red) by either FStitch (on left) or Ves-
pucci (on right). Log fold-enrichment is relative to average Pol Il ChIP-
seq read density. Statistical significance is assessed via the Kolmogrov-
Smirnov test (significance bars colored by p-value). Error bars indicate
one standard deviation away from the mean.

cell lines [21], [22], [23]. Unfortunately, direct comparisons
between GRO-seq and ChIP-seq are complicated by the
fact that GRO-seq is strand specific whereas ChIP-seq is
not. Yet, we reasoned that the superposition of reads along
the sense and anti-sense strand within GRO-seq should
approximate ChIP-Pol II read coverage within the same
region.

Thus, an active call should have a higher enrichment of
RNA Pol II ChIP-seq than an inactive call. In all three cell
lines, we used FStitch to identify bidirectional, active and
inactive calls. Vespucci does not contain an unbiased bidi-
rectional transcription annotator, therefore only active and
inactive predictions were obtained. For MCF7 we utilized
the published list of Vespucci annotations but for both
HCT116 and IMR90 we used the Vespucci parameters
obtained via grid search (Table 1). We note that the Ves-
pucci approach is less capable of distinguishing active from
inactive regions as assessed by Pol II occupancy (Fig. 6). We
observe a significant enrichment for Pol II occupancy
between active and inactive FStitch regions. Additionally, we
observe a high degree of Pol II occupancy at bidirectional
calls, as expected given that enhancers are known to show
significant enrichment for Pol II occupancy [9].

3.3 Annotation Comparisons

We next sought to evaluate the performance of our algo-
rithm on identifying biologically meaningful regions of
active transcription by comparing the results of FStitch to
RefSeq annotations. We first classified our active transcript
calls on the HCT116 DMSO experiment by their overlap to
genomic annotations. Most FStitch active calls overlap a
known annotation: gene, antisense to a gene, long non-cod-
ing RNA (IncRNA), small nucleolar RNA (snoRNA), micro-
RNA (miRNA) and transfer-RNA (tRNA) (Fig. 7). Of the
26.75 percent of FStitch active calls that do not overlap
known annotations, many can be described as bidirectional
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Fig. 7. Active call characterization. FStitch active calls on HCT116
DMSO are divided into classes based on overlap with genomic annota-
tions. Unannotated active calls are assigned if they have no overlap to
previous annotations on either strand. FStitch called 37,591 active
regions.

calls that overlap an H3K27ac mark; which is characteristic
of an eRNA.

Interestingly, within the unannotated active calls, a small
fraction (9 percent) contain both an open reading frame that
spans at least 60 percent of the length of the call and a bidi-
rectional call at the 5-end. These may be unannotated pro-
tein coding genes. We translated these regions and searched
the UniProt/SwissProt protein database [43], uncovering
several hits. By isolating the statistically significant hits and
tokenizing the hit descriptions, we observed that more than
95 percent of all hits contained the reoccurring words puta-
tive, uncharacterized or encode.

Meta-gene analysis is a popular method of assessing the
average behavior of an assay over gene annotations [44]. By
taking advantage of the high read coverage of the HCT116
GRO-seq dataset, we constructed a meta-gene of FStitch
active calls that completely overlap a RefSeq annotation
(n = 2512). For this analysis, we averaged the read coverage
within 100 uniformly distributed proportions relative to the
FStitch call (Fig. 8). This uncovered two features of active
regions: (1) the 3'-end peak is much larger than previously
detected [1], [14] and (2) there is a corresponding small
build up of reads along the anti-sense strand that mirrors
the 3’-end peak. It should be noted that the 3’ peak does not
always correlate well with the exact 3'-end of the annotation
[45]. This is likely because the 3'-end of a gene annotation is
typically the mRNA cleavage site and not the RNA Pol II
termination site.

Given that FStitch does not rely on previous annotations,
we next ask how the ends (5" and 3') of FStitch active calls
relate to known RefSeq gene annotation ends. Specifically,
we measure the difference in genomic location between the
5" end (3’ end) of an FStitch active call and the nearest RefSeq
annotation 5 end (3’ end), respectively. Interestingly, the
GRO-seq signal often begins upstream of the annotated 5’
start site of RefSeq genes (Fig. 9A). Indeed, there appears to
be two distinct populations within the 5 ends. Therefore,
we fit a mixture of two Gaussian distributions using the
Expectation Maximization algorithm [46] to the difference
of 5 ends histogram. We examined the upstream Gaussian
distribution for distinguishing features and found it shows
a 2.5 fold enrichment of anti-sense transcription compared
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Fig. 8. Average read coverage of FStitch active calls. FStitch active calls
on the positive strand that completely contain a RefSeq annotation were
used to calculate the average behavior. Blue and red represent positive
and negative strand coverage, respectively. For each active region, the
length was divided into 100 uniformly sized proportions and the read
coverage was averaged within each bin. The average annotated 3’ end
is noted by the line and transcription beyond the annotation is shaded.
Here, we require an FStitch to completely overlap a RefSeq annotation
and the RefSeq annotation overlap at least 75 percent of the FStitch call.

to the Gaussian centered at roughly the zero position. This
suggests that many genes have upstream bidirectional
transcription, and therefore may may have overlapping or
adjacent upstream enhancers [38] or promoter upstream
transcripts [47]. We note that, in these cases, the upstream
region and the annotated gene are a single active call.
Additionally, we also see an elongation of several kilo-
bases (average of ~8 kb) of GRO-seq signal past the 3'-end of
annotated genes (Fig. 9B); consistent with the fact that poly-
merase proceeds far beyond the mRNA cleavage site [45],
[48]. Notably, the 3’ extension is missed by earlier GRO-seq
de novo transcript detection algorithms [15], [16]. Indeed,
Vespucci captures many of the same general trends of
FStitch, but typically terminates 3’ extensions earlier. Upon
further examination, this may reflect the fact that Vespucci’s
default parameters are biased to highly expressed regions
and the 3’ extensions are often weakly transcribed. On the
other hand, the hidden Markov model of Hah et al. was
trained to match RefSeq annotations and is therefore unable
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Fig. 9. Histograms comparing the active region calls of FStitch to RefSeq
annotations. We plot the distance between the end of an active call and
the nearest RefSeq annotation for (A) 5’-ends; (B) 3'-ends. Colors red,
blue and green are Hah et al., Vespucci (grid search parameters) and
FStitch active calls, respectively. Histograms are probability normalized.
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Fig. 10. Bidirectional predictions and active FStitch calls connected by a
ChIA-PET read pair show correlated GRO-seq transcription. The GRO-
seq transcription level of ChlA-PET read pairs that overlap a bidirectional
call and an active call on either end are plotted, demonstrating a strong
correlation (p = 0.8301) in transcription (as measured by GRO-seq).
Points are colored according to genomic distance (kb) between bidirec-
tional prediction and active call.

to identify distinguishing features of nascent transcription at
either end.

3.4 Characterizing Bidirectional RNA Activity
We next sought to assess the accuracy of our bidirectional
predictions genome-wide. As our goal is the identification
of eRNAs, we first examined what fraction of our bidirec-
tional calls overlap enhancer marks. For this analysis we
excluded chromosome 1 (our training set) and used FStitch
to predict bidirectional transcription in all three cell lines:
IMR90, MCF7 and HCT116. In all cell lines, the bidirectional
FStitch calls were significantly enriched for overlapping
DNase I hypersensitivity sites and H3K27ac marks indicat-
ing that a large fraction of these calls are likely eRNAs
(Table S2, available in the online supplemental material).
We hypothesized that bidirectional predictions that over-
lap enhancer marks will be highly transcribed, moreso than
bidirectional predictions without corresponding enhancer
marks (Figure 54, available in the online supplemental mate-
rial). In all three cell lines, we see higher levels of bidirectional
transcription when accompanied by a chromatin enhancer
mark. As proof of concept, marks which do not overlap bidi-
rectional prediction show little read density indicating that
our false-negative rate is low (Figure S4, available in the
online supplemental material, in red). Bidirectional predic-
tions that overlap both a gene annotation and an enhancer
mark show the highest level of average transcription. More-
over, we predicted 342, 241 and 198 bidirectional phenomena
in the HCT116, MCF7 and IMR90 datasets, respectively, that
do not overlap a chromatin enhancer mark but do show a
GRO-seq transcription greater than the mean GRO-seq signal
of bidirectional predictions overlapping a DNase I hypersen-
sitivity site or H3K27ac mark. These highly expressed bidirec-
tional regions may be, as of yet, undiscovered enhancers.
Next, we examined the theory that enhancer elements are
three-dimensionally connected to their gene regulatory
partner, an interaction that correlates with enhancer func-
tion [9], [10], [11], [12], [13]. To compare GRO-seq signal
with three-dimensional chromatin interactions, we utilized
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a Pol II chromatin interaction analysis by paired-end tag
sequencing (ChIA-PET) dataset in the HCT116 cell line [11].
ChIA-PET is a rather new high-throughput technique that
pulls down a protein of interest (in this case Pol II) and pro-
vides information on long range chromatin interactions [29]
associated with the protein. Therefore, we first examined the
overlap between both FStitch active calls and bidirectional
predictions with paired ChIA-PET reads. We see a highly
significant overlap (hypergeometric; p-value < 1071°) bet-
ween ChIA-PET reads and FStitch active calls.

Given the three dimensional association implied by ChIA-
PET, we next sought to ascertain if interacting DNA regions
show a correlated GRO-seq transcription signal. When assay-
ing for GRO-seq signal utilizing only ChIA-PET read pairs,
we found no correlation in transcription level (Pearson’s cor-
relation coefficient; p = 0.001). However, when we isolate
ChIA-PET read pairs that overlap both a bidirectional predic-
tion and an active FStitch call on either end, we see a strikingly
high correlation (p = 0.8301; Fig. 10). Note that we do not
include cases where the ChIA-PET read pairs overlap the
same FStitch active call used to make the bidirectional predic-
tion. Moreover, this linear relationship appears completely
independent of genomic distance. This poses an obvious
question: can we predict enhancer-gene interactions? Using a
general linear model estimated from Fig. 10, we attempted to
predict enhancer-gene interactions using only GRO-seq tran-
scription level. Unfortunately, only 7 percent of enhancer-
gene interaction predictions were validated by ChIA-PET
read pairs. This result suggests that while GRO-seq signal
appears highly correlated between enhancers and their gene
targets, additional information is needed to predict which
enhancers are associated in three dimensions with particular
FStitch active calls.

3.5 Differential Transcription at Annotated Genes:
A Comparison of FStitch to Allen et al.

Finally, we sought to determine the extent to which an
annotation agnostic approach (FStitch) alters our earlier
annotation driven p53 GRO-seq data analysis [20]. In our
earlier work we examined the direct transcriptional targets
of the transcription factor p53 in HCT116 cells. In that
experiment, p53 was activated by the non-genotoxic drug
Nutlin (see [20] for complete details). Analysis was annota-
tion centric but excluded the first 1 kb around the annotated
start to avoid the initiation peak of polymerase. Further-
more, assessment of transcription over p53 binding sites
was dependent on publicly available p53 ChIP-seq data.

We ran FStitch on the control GRO-seq (DMSO) and the
p53 activated GRO-seq (Nutlin) independently. In total we
found 37,591 active calls in DMSO and 39,097 active calls in the
Nutlin treated sample. Many active calls in both DMSO and
Nutlin overlap RefSeq annotated genes (annotation overlap
for DMSO shown in Fig. 7). In total, 16,191 (of 23,669) genes
are transcribed in at least one of the two experiments. Interest-
ingly four large genes called as differentially transcribed in
Allen et al. are not called as active by FStitch in either experi-
ment. These genes appear to contain only scattered back-
ground reads (noise), but because of their massive size still
contain a large total number of reads. The merged method
was then used to identify regions of interest for assessing dif-
ferential transcription between DMSO and Nutlin.
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Fig. 11. The overlap between FStitch and Allen et al. at RefSeq genes.
The gene sets called as differentially transcribed by the two methods,
Allen et al. (red) and FStitch (blue), are compared at gene annotations
(black numbers). The histogram on the right shows the percentage of
each annotated region that is called as differently transcribed by FStitch.
When the overlap to a gene is required to be > 75 percent (green box),
129 genes are no longer called as differentially transcribed by FStitch,
including 45 genes that were previously called by both methods.

First we sought to examine the impact of the two distinct
methods of determining differential transcription, namely
FStitch active regions versus Allen et al., at annotated genes.
It is worth noting that DESeq is sensitive to the size of the
input set (both in multiple hypothesis test correction and its
variance estimate). Therefore to match the analysis of Allen
et al., we first examined only the set of FStitch active regions
of interest that overlap annotated genes. With this set as
input to DESeq, 293 regions are differentially transcribed,
overlapping 289 distinct genes (Fig. 11).

By manual inspection, we noted that many FStitch
regions of interest were much shorter than the annotated
gene. Therefore we next required that for each gene at least
75 percent of the gene be called as differentially transcribed.
From this we conclude that many genes, including 45 called
in Allen et al., do not show differential transcription along
the full length of the gene. For example, PVRL4 (Fig. 12)
was called as differentially transcribed in Allen et al. yet
FStitch identifies that the signal for differential transcription
is entirely driven by a distinct small subregion within the
gene. Most of these differentially transcribed regions over-
lap FStitch bidirectional calls, implying that the annotation
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Fig. 12. Differential transcription at PVPR4. An IGV snapshot showing
PVPR4, a negative strand gene where a small portion of the gene is dif-
ferentially transcribed. The region of differential transcription (black
bars) overlaps both FStitch bidirectional calls (blue bars) and p53 bind-
ing sites (green bars), indicating this may be an intragenic enhancer.
The tracks, in order, are: histograms of the GRO-seq signal observed in
DMSO and Nutlin, respectively (positive strand: blue; negative strand:
red); RefSeq annotation for PVPR4; FStitch bidirectional calls in both
DMSO and Nutlin, respectively (blue bars); FStitch differential transcrip-
tion calls (black bars: top is negative strand, bottom is positive strand);
location of p53 binding events (in green).
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Fig. 13. Overlap of differential transcription and p53 marks. FStitch calls
were grouped by significance of differential transcription (significant:
DESeq adj. p-value < 0.1) and overlap with a RefSeq annotation. From
top to bottom, there are 64,899 regions without differential transcription
(insignificant) and without overlapping annotation (unannotated);
782 significant-unannotated; 23,986 insignificant-annotated; and 262
significant-annotated, respectively. p53 binding site (ChIP) overlap and
p53 motif presence are assessed as described in the text.

centric method was sometimes mislead by overlapping,
fully contained enhancer(s).

In several cases, the signal for differential transcription is
not uniformly distributed across the transcribed region. The
distribution of reads is not uniform, with most genes show-
ing a 5 peak, corresponding to polymerase initiation that is
distinct from the read distribution within the gene. The
Allen et al. analysis excluded the first 1 kb of each annotated
region in an effort to examine only polymerase elongation
through the body of the gene. With FStitch we consider the
entirety of the active region. Consequently when differential
transcription is driven primarily by read depth changes at
the 5" end, the gene is called by FStitch but missed in Allen
et al. Analogously, Allen et al. calls genes where the gene
body is changing but inclusion of the 5 peak washes out the
differential signal. Finally, there are cases where a gene is
called in Allen et al. but missed by FStitch because the active
call overlapping the gene is much longer than the gene, a
situation that arises in gene dense regions.

3.6 Differential Transcription Using all FStitch
Active Calls

Importantly, FStitch is able to identify unannotated regions

that are differentially transcribed. When DESeq considers

all FStitch regions of interest, 1,044 regions are called as dif-

ferentially transcribed. Remarkably 75 percent of these

regions do not overlap an annotated gene.

Because Allen et al. found differential transcription at
p53 binding events, we hypothesize that a large fraction of
the unannotated FStitch differentially transcribed regions
would contain p53 binding events and/or p53 sequence
motifs. Binding events for p53 were called as described in
Allen et al., except requiring consensus from three of the
seven publicly available p53 ChIP datasets [20], [31]. Pres-
ence of the motif was determined by the publicly available
P53 scanner algorithm, requiring a p-value < 0.01 [32]. Dif-
ferentially transcribed regions, both those overlapping
annotated and unannotated regions, are highly enriched for
marks of p53 (either binding or motif) See Fig. 13. We note
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Fig. 14. Overlap of differential transcription with enhancer marks. FStitch
calls that do not overlap any RefSeq annotation were grouped by differ-
ential transcription by DESeq (significant: adj p-value < 0.1). Regions
were assessed for overlap with enhancer marks: H3k27ac, H3K4mef1,
and DNAse | hypersensitivity [26], [28].

that because annotated regions tend to be much longer than
unannotated, they are more likely to contain a p53 motif
and/or ChIP site. In fact, most regions that are differentially
transcribed (73 percent) overlap an experimentally deter-
mined p53 binding event.

Lastly, we sought to determine which unannotated FStitch
differential transcription calls are themselves p53 enhancers.
To this end, we examined their overlap with known enhancer
marks H3K27ac, H3K4mel and DNAse I hypersensitivity
(Fig. 14). Unannotated differentially transcribed FStitch calls
are over enriched for enhancer marks, relative to background
expectation. Indeed, the three enhancer marks (H3K27ac,
H3K4mel and DNAse I hypersensitivity) are more likely to
co-occur in the differentially transcribed set. Interestingly, we
also note that 21.2 percent of these regions are paired with
another differentially transcribed FStitch call in the HCT116
ChIA-PET study. This overlap far exceeds the expectation
(0.01 percent) that a random FStitch call will pair with a differ-
entially transcribed partner by ChIA-PET.

4 DISCUSSION

We present a fast and robust algorithm, called FStitch, for
the identification of transcripts within GRO-seq data that
is annotation agnostic. Parameters of the algorithm are
learned from small amounts of training data and can
adapt readily to low depth of sequencing. By taking
advantage of logistic regression, a non-linear classification
of the feature space is learned. This classifier is then
embedded within a hidden Markov model framework, so
as to identify contiguous segments of active transcription.
The active calls from our algorithm correspond well to
independently obtained secondary datasets (such as Pol
II ChIP-seq and ChIA-PET) and can be used to identify
sites of bidirectional transcription within a dataset or to
examine differential transcription between datsets. FStitch
is user friendly and fast, with classifications easily viewed
on common genome browsers.

FStitch determines its active calls purely on the signal
within the data. In regions of dense and/or overlapping
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transcription, the gaps between distinct transcripts are short
to nonexistent. Consequently, FStitch makes long active calls
that likely contain multiple transcripts. Additionally, the
lack of pre-defined regions of interest complicates the asse-
ssment of differential transcription. However, the gains in
insight about transcription and regulation warrants the
added complexity.

Using FStitch, we learned several interesting new fea-
tures of transcription at previously annotated genes. We
have shown that gene transcription progresses much farther
than the 3’-end of the mRNA cleavage site. Remarkably,
some of the active calls that are unannotated show signa-
tures of open reading frames, implying they may be under-
appreciated genes.

More work is needed to better resolve the transcriptional
dynamics observed within genes, such as the 5 and 3
peaks. These peaks are reminiscent of patterns seen in
unstranded Pol II ChIP data and likely correspond to dis-
tinct stages of RNA polymerase activity [49]. Unfortunately,
the height and spread of these peaks vary from gene to
gene, making their precise detection difficult. However, it
may be possible to build models that can more clearly iso-
late this substructure within an annotated transcript. In fact,
alterations in the size and shape of the GRO-seq signal
between experiments may point to distinct modes of regula-
tion. Indeed leveraging finer substructure within GRO-seq
signal could help to resolve distinct biological transcripts
within active calls. The ability to isolate distinct but adjacent
(or even overlapping) regions of transcription would be a
powerful use of GRO-seq signal.

Our work demonstrates that GRO-seq is a rich and
under-utilized source of insights into transcription and its
regulation. Sites of bidirectional transcription are readily
identified within GRO-seq data with high accuracy. These
bidirectional predictions correlate strongly with known
enhancer marks, implying that many are eRNAs. In fact, the
single largest class of transcripts that respond (i.e. show dif-
ferential transcription) when p53 is activated are bidirec-
tional RNAs. Most of these RNAs contain p53 signals, either
binding by ChIP or enrichment for the sequence motif.
Interestingly, some of these differentially transcribed enh-
ancers are intragenic, potentially confounding studies that
depend on the underlying annotation.

Furthermore, when bidirectional predictions and a sepa-
rate FStitch active call overlap chromatin interaction calls
(by ChIA-PET), the two regions are transcribed at the same
level; further evidence of enhancer-to-gene interaction. This
finding is consistent with ENCODE reporting strong corre-
lations between the presence of an enhancer RNA, gene
expression, and promoter-enhancer interations [50], [51].
More interesting is the observation that differentially tran-
scribed FStitch calls are three dimensionally connected via
ChIA-PET to another differentially transcribed FStitch call.
It remains to be seen if bidirectional FStitch predictions
with similar GRO-seq transcription profiles could be com-
bined with relevant additional information such as tran-
scription factor binding motifs or chromatin marks to create
a rich model for predicting enhancer-to-gene interactions.

It should be noted that because the only input to FStitch
is a genome bedgraph file and a training set, FStitch is not
technically specific to GRO-seq data. This method may bare
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relevance in any experiment where contiguous regions of
dense read coverage wish to be isolated; a characteristic
most notably present in Pol II ChIP-seq datasets. Indeed,
the relevance of this algorithmic structure to ChIP-seq peak
calling should be explored further.
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