# Day 7 Worksheet | QC & Nascent Sequencing

#### Overview

We will first go through some more in-depth QC on RNA/GRO-seq datasets and compare the outputs using MultiQC. Then, we will learn how to annotate our nascent data using FStitch. After, we will cover the basics of Tfit/MD score analysis which you will try to apply/run in the homework.

## **Part 1: Quality Control**

#### **Install Required Python Packages**

\$ sh /scratch/Workshop/SR2019/7\_nascent/scripts/install\_python.sh

## **Copy Scripts to Users Directory**

#### **Running Fastqc**

- 1. Edit your 7\_fastqc.sbatch script. Make sure to change your email, username, and std err/out if they differ from the template
- 2. Run the 7\_fastqc.sbatch script (sbatch 7\_fastqc.sbatch)

Remember the arguments required to run fastqc are...

\$ fastqc SRR.fastq -o OUTDIR/

For a full list of arguments, see here.

#### **Running Pileup**

- 1. Edit your 7\_pileup.sbatch script. Make sure to change your email, username, and std err/out if they differ from the template
- 2. Run the 7\_pileup.sbatch script (sbatch 7\_pileup.sbatch)

The basic arguments to run pileup.sh (part of the BBMap suite of tools) are...

\$ pileup.sh in=SRR.sorted.bam out=SRR.coverage\_stats.txt

For a full list of arguments, see here.

### **Running Read Distribution**

- 1. Edit your 7\_read\_dist.sbatch script. Make sure to change your email, username, and std err/out if they differ from the template
- 2. Run the 7\_read\_dist.sbatch script (sbatch 7\_read\_dist.sbatch)

The basic arguments to run read\_distribution.py (part of the RSeQC suite of tools) are...

5

For a full list of arguments, see here.

### **Running MultiQC**

First, set a PATH to your locally install executables:

\$ export PATH=~/.local/bin:\$PATH

Then, run MultiQC on your qc/ directory:

\$ multiqc qc/ -o multiqc/

The minimum required arguments for MultiQC are actually:

\$ multiqc .

which will search your current directory and all sub-directories for any files which match the patterns supported by the program and the default output for the report will be your current directory.

For a full list of supported modules, output options, and example reports see here.

Once we have out .html output, we can open up the report in X2Go. I will demonstrate this in-class.

## Part 2: Nascent Analysis

For full help instructions in running FStitch, see here.

#### **Running FStitch Train**

We need to begin by generating our training file. Begin by logging into X2Go and load IGV:

\$ sh /opt/igv/2.3.75/igv.sh

Once IGV is loaded, we will import by going to the menu and selecting:

Regions  $\rightarrow$  Import Regions ...

and loading the training file I started located here: /scratch/Workshop/SR2019/7\_nascent/chr1\_hct116.bed

We will add another 3 "ON" (transcriptionally active) regions and 3 "OFF" (transcriptionally inactive) regions. To do so, we will need to make sure our region navigator is opened by selecting the following from the top menu:

Regions  $\rightarrow$  Region Navigator ...

Once we have 40 total regions, we can export our new BED file (chr, start, stop, description) to our /scratch/Users/USERNAME directory with the filename of our choice:

Regions  $\rightarrow$  Export Regions ...

Now that our training file is prepared, we can edit our FStitch train script as follows:

#### 6

- 1. Edit your 7\_fstitch\_train.sbatch script. Make sure to change your email, username, and std err/out if they differ from the template
- 2. Add the full path to your completed training file
- 3. Run the 7\_fstitch\_train.sbatch script (sbatch 7\_fstitch\_train.sbatch)

The basic arguments to run FStitch train are...

```
$ ./FStitch train --bedgraph SRR.cat.bedGraph --strand + --train

$ hg38_train.pos.bed --output PROJECTNAME.hmminfo
```

### **Running FStitch Segment**

We will check to make sure our output parameters (.hmminfo file) are non-zero values. If our training file looks good, we can then edit our fstitch segment script as follows which will annotate our genome into transcriptionally active and inactive regions of interest:

- 1. Edit your 7\_fstitch\_segment.sbatch script. Make sure to change your email, username, and std err/out if they differ from the template
- 2. Add the full path to your paramter file (.hmminfo)
- 3. Run the 7\_fstitch\_segment.sbatch script (sbatch 7\_fstitch\_segment.sbatch)

The basic arguments to run FStitch segment are...

Notice in the script we are also concatenating our positive and negative strands and sorting using BEDTools (we will see more of this type of file manipulation on day 10). You will use another BEDTools module, merge, in your homework. Don't worry about the details, yet – the script is all set for you.

#### **Running FStitch Bidir**

Once our segment module is complete, we will run a python add-on "bidir" that will parse these active regions into regions of bidirectional transcription (putitive eRNAs/regulatory elements/sites of RNAP loading). There are a number of options that will be specific to your data (e.g. due to quality) that you may have to adjustas needed. Once your segment is complete, edit your bidir script as follows:

- 1. Edit your 7\_fstitch\_bidir.sbatch script. Make sure to change your email, username, and std err/out if they differ from the template
- 2. Run the 7\_fstitch\_bidir.sbatch script (sbatch 7\_fstitch\_bidir.sbatch)

The basic arguments to run FStitch bidir are...

```
$ bidir --bed SRR.cat.fstitch.bed --genes gene_ref.bed --output

$ SRR.fstitch_bidirs.bed
```

#### 7