Worksheet 6.2/7.1: Differential gene expression analysis with DESeq2

Author: Jacob Stanley (jacob.stanley@colorado.edu)

Resources:

- <u>DESeq2 documentation</u>
- DESeq2 tutorial

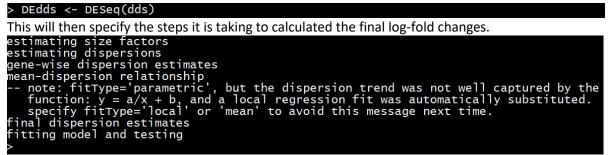
The purpose of DESeq2 is to identify which genomic loci demonstrate a statistically significant difference in expression level between two or more conditions (referred to as "gene differential expression analysis"). It does so by modeling the variance in expression level across the full range of baseline expression levels present in the data, and determines if the differential expression level for each loci is significantly greater than this variance. DESeq2 takes as an input the <u>unnormalized</u> count values for each (non-overlapping) loci in each sample. We recommend that you use featureCounts() to compute count values. DESeq2 performs best when provided multiple replicates per experimental condition (preferably 5+ replicates), in order to get an accurate estimation of within condition variance. DESeq2 is only to be used for non-overlapping, unique genomic loci. If one's aim is to compute differential expression of transcripts, DESeq2 is not appropriate.

Note: All commands are executed within the R environment. We will be executing them manually, from the R command line, but they can also be compiled into a single script to be executed together.

Prepare experiment table and count matrix from RData file:

- Load in matrix of count data (generated last time)
 load("/scratch/Users/USERNAME/RNA-seq/featureCounts_workspace.RData")
- 2. Define your sample table containing treatment conditions
 - a. First let's define a variable that contains our conditions, corresponding to each sample
 > condition <- c("dmso", "dmso", "nutlin", "nutlin")
 - b. Now let's combine our input files, sample IDs, and experimental conditions into a single dataframe to produce our experiment table.
 > exptable <- data.frame(input, sample_ID, condition)

RNA-seq differential expression analysis with DESEq2:


1. Load DESeq2 library into your R session. This contains all the necessary functions for the rest of the analysis:

```
> library("DESeq2")
```

2. Generate your DESeq2 data structure (*DESeqDataSet*). This contains all the count data, sample IDs, and experimental conditions in a format appropriate for running *DESeq()*:

```
dds <- DESeqDataSetFromMatrix(
countData = count_matrix$counts,
colData = exptable,
design =~ condition
```

 Run deseq() method (estimates dispersion, fits GLM, calculates LFC):

Here we see a warning that the assumed model for the dispersion relationship did not fit well. Since DESeq2 makes a number of assumptions about the underlying distribution of your count data, checking the dispersion relationship is important to evaluating the reliability and interpretability of your results.

control)

5. Define your alpha value and the experimental conditions you want to compare:

> alpha_value = 0.05 > treatment = "nutlin" > control = "dmso"	
Define your contrast:	
> contrast <- c("condition".	treatment.

6. Extract significant results:

> res <- results(DEdds, alpha=alpha_value, contrast=contrast)</p>

7. Perform log-fold change shrinkage (for visualization): > res_shrink <- lfcShrink(DEdds, contrast=contrast, res=res)

Plotting and saving results:

- 1. Generate plot of the dispersion estimates:
 - a. Define your filename:
 - > Dispname <- paste0("Disp_est_", treatment, "_", control)</pre>
 - b. Open a pdf in which to save your dispersion estimates plot: > pdf(paste0(outdir, Dispname, ".pdf"))
 - c. Generate plot, using the DESeq2 *plotDispEsts()* function: > plotDispEsts(DEdds) Close graphics file: > dev.off()
- 2. Generate MA plot:
 - a. Define your filename, plot title, and the LFC limits of your plot
 - MAname <- paste0("MA_plot_", treatment, "_" title <- paste0(treatment, " vs ", control) limits <- c(-4, 4)
 - b. Open a pdf in which to save your MA plot: > pdf(paste0(outdir, MAname, ".pdf"))
 - c. Generate plot, using the DESeq2 *plotMA()* function: > ma <- plotMA(res_shrink, main=title, alpha=alpha_value, ylim=limits) Close graphics file:

> dev.off()

- 3. Save results:
 - a. Define filename:

> res_file <- paste0("res_", treatment, "_", "control")</pre>

- b. Sort results by the adjusted p-values:
 > res_shrink <- res_shrink[order(res_shrink\$padj),]</pre>