
Worksheet 4.1 - Checking fastq file sequencing quality using fastQC
Authors: Mary Allen & Daniel Ramirez

FastQC webpage: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Username: Screenshots show ‘daramirez’, though you will see your own username!

1. Using an appropriate terminal, log on to the cluster where you will use fastQC:
a. Use pwd to make sure you know where you are.

b. Change the working directory (cd) to your own scratch directory.

2. Make 3 new directories/folders (mkdir): fastQC, sbatch and eofiles.

These are the directories that will contain the results from fastQC, the error
and output files generated by your batch scripts jobs, and the batch scripts
themselves.

3. Check the fastq data files in the following public directory using cd and ls:
/scratch/Workshop/SR2019/4_qc/fastq . There are many fastq files in that directory.
Some of them are zipped (.gz), some are not. Pick one. In the following examples here I
picked “Example_1.fastq.gz”.

4. Find and explore the contents (e.g. vim <file>) of the script batch template
“template.sbatch” in the directory: /scratch/Workshop/SR2019/4_qc/sbatch

You cannot edit, only look. The top of the file has information for the queue.
The middle section contains job specific documentation. We will change this file
so that it can be used for fastQC. This is your template. When you are done
looking use :q! then press enter to exit the file.

5. Copy the script batch “template.sbatch” that you just looked at to your previously created
sbatch directory “/scratch/Users/<username>/sbatch/” using the new name
“fastQC.sbatch” (cp <input> <output>). Check that copying worked by moving to the
sbatch directory and listing its contents (hint: cd & ls).

6. Complete the new “fastQC.sbatch” file with the right content to run fastQC. (hint:
transition to insert mode by pressing i if using vim.)

a. Change the name of the script batch from <JOB-NAME> to something more
useful, such as “fastQC”.

b. Replace <EMAIL> with your own email address to which you want to receive
any notifications.

c. Replace <USERNAME> with your own username to complete the path directory
to where to store the error and output files.

d. Complete the following fields: nnodes, ntasks, mem and time. FastQC cannot use
multiple processors per input file. So 1 node, 1 task or processor, 10gb for
memory and 1 hour for wall time should be enough.

e. Specify first the path of the fastq file that you selected earlier as the value of the
variable “INPUT_DIRECTORY”, and second the path that leads to the directories
you created earlier in your scratch directory as the value of the variable
“OUTPUT_DIRECTORY”. For example, I decided to use the file
“Example_1.fastq.gz”, so I will type this file’s complete path directory “/scratch/
Workshop/SR2019/4_qc/fastq” to the INPUT_DIRECTORY variable, and I will
type “/scratch/Users/daramirez/fastQC/”
to the OUTPUT_DIRECTORY variable.

f. Assign the required modules necessary to run this fastQC job. To do this, exit vim
by saving all changes (press ESC and :wq!). To look for the correct fastQC
module, list all available modules on the computer cluster that contain the word
“fastq” in them. Type the following command module spider <string> and look
for the one for fastQC.

Copy “module load fastqc/0.11.5”. Open again the file “fastQC.sbatch” using
vim and replace “MODULES_TO_LOAD” with what you just copied.

g. The last edit you need to do is the actual text that runs fastQC!

The syntax to use fastQC is as follows:
fastqc --format <format> --threads <n> --outdir <output_file> <input_file>
Where <format> is the format of the input file “fastq”, <threads> is 1
(processors or CPUs), <output_file> is the path and name that you want to

specify to where to store the results, and <input_file> is the path and name of the
fastq file you want to run. We can take advantage of the variables that we created
INPUT_DIRECTORY and OUTPUT_DIRECTORY. Though this may seem silly,
creating variables makes longer pieces of script much more readable when you re-
utilize a given path many times.

So we can go from having in the template:

To having a complete fastQC command:

The \ at the end of every line is used to break up what would be a long and
confusing single line command into pieces corresponding to every part of the command,
just for clarity purposes.

7. Congratulations! You have written your first batch script. You just need to submit the
script to the job manager SLURM for it to begin processing.

a. Save all changes to “fastQC.sbatch” and exit vim. In the terminal, located in the
directory where “fastQC.sbatch” lives, type sbatch <sbatch file>. The job
manager will give you a job number. Once submitted, you can check on the status
of jobs by typing squeue -u username.

8. Move to the “eofiles” directory. If you cannot remember where you told SLURM to put
the error and output files, go back and check the “fastQC.sbatch” file.

a. There should be two files in that directory.
One named <job_name>.<job_number>.out
and one named <job_name>.<job_number>.err

b. Look at both of those files. Use vim or less or more or head or tail.
If your files look like this, then your fastQC job completed successfully.

9. Next, move and look at the other output files stored in the “fastQC” folder that you
created earlier. The two files have .zip and .html extensions.

10. Transfer the .html file to your own computer so that you can open it using a web browser.
You can use rsync, scp or other command to do so. If you are on windows you will use
another method.

a. Open a new terminal. Do not log into the computer cluster. This terminal window
is on your computer. You can tell because it does not say “[username@ip-172-31-
15-245]$” at the beginning of every line, but says my computers username and
name.

b. Make a new directory to put your html file in. Then use rsync (or your command
of preference) to move the html file from the cluster to your home machine.

11. Open the html file you just downloaded.

12. The html report will look like this. You can navigate it just like a website.

